Skip to main content

Impact of the New Conceptual Framework of Alzheimer’s Disease in Imaging Studies

  • Chapter
  • First Online:
PET and SPECT in Neurology
  • 1435 Accesses

Abstract

For both research and clinical settings, the importance of an accurate diagnosis of AD is imperative given its much-feared consequences, which cannot be understated. The diagnosis of AD should be restricted to the presence of both: (1) a clinical phenotype, either typical (characterized by an amnestic syndrome of the hippocampal type) or atypical (including the posterior variant, the logopenic variant and the frontal variant, to which it may be possible to add the cortico-basal syndrome), and (2) in vivo evidence of positive pathophysiological markers, acquired with molecular neuroimaging or with cerebrospinal fluid investigation. In the preclinical state of the disease, evidence reported in the last few years suggests that the presence of tau and amyloid positivity is not sufficient to definitively predict the invariable occurrence of symptoms. Therefore, measures of pathophysiological markers are not recommended in cognitively unimpaired individuals, in the absence of therapies or prevention programs showing efficacy on delaying onset of disease (although this may happen outside the clinical setting for specific reasons, for clinical trials, research projects or cohort studies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    PubMed  PubMed Central  Google Scholar 

  • Albert M, Zhu Y, Moghekar A et al (2018) Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain 141:877–887

    PubMed  PubMed Central  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschrift fur Psychiatr und Psych Medizin 64:146–148

    Google Scholar 

  • Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Zbl Ges Neurol Psych 4:356–385

    Google Scholar 

  • Arenaza-Urquijo EM, Vemuri P (2018) Resistance vs resilience to Alzheimer disease. Neurology 90:695–703

    PubMed  PubMed Central  Google Scholar 

  • Barkhof F, Polvikoski TM, Van Straaten ECW et al (2007) The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology 69:1521–1527

    CAS  PubMed  Google Scholar 

  • Beach TG, Monsell SE, Phillips LE, Kukull W (2012) Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol 71:266–273

    PubMed  Google Scholar 

  • Bell WR, An Y, Kageyama Y et al (2019) Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer’s disease. Alzheimers Dement 15:8–16

    PubMed  Google Scholar 

  • Bilgel M, An Y, Helphrey J et al (2018) Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults. Brain 141:2475–2485

    PubMed  PubMed Central  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    CAS  PubMed  Google Scholar 

  • Boluda S, Toledo JB, Irwin DJ et al (2014) A comparison of Aβ amyloid pathology staging systems and correlation with clinical diagnosis. Acta Neuropathol 128:543–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwman FH, Verwey NA, Klein M et al (2010) New research criteria for the diagnosis of Alzheimer’s disease applied in a memory clinic population. Dement Geriatr Cogn Disord 30:1–7

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1997) Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18:S85–S88

    CAS  PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    CAS  PubMed  Google Scholar 

  • Brookmeyer R, Abdalla N (2018) Estimation of lifetime risks of Alzheimer’s disease dementia using biomarkers for preclinical disease. Alzheimers Dement 14:981–988

    PubMed  PubMed Central  Google Scholar 

  • Budd-Haeberlein S, Castrillo-Viguera C, Gheuens S et al (2018) 24-month analysis of change from baseline in clinical dementia rating scale cognitive and functional domains in PRIME: a randomized phase 1b study of the anti–amyloid beta monoclonal antibody aducanumab. Alzheimers Dement 14:P242

    Google Scholar 

  • Buerger K, Ewers M, Pirttilä T et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041

    PubMed  Google Scholar 

  • Burnham SC, Bourgeat P, Doré V et al (2016) Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol 15:1044–1053

    PubMed  Google Scholar 

  • Cacciamani F, Tandetnik C, Gagliardi G et al (2017) Low cognitive awareness, but not complaint, is a good marker of preclinical Alzheimer’s disease. J Alzheimers Dis 59:753–762

    CAS  PubMed  Google Scholar 

  • Chase TN, Foster NL, Fedio P, Brooks R, Mansi L, di Chiro G (1984) Regional cortical dysfunction in Alzheimer’s disease as determined by positron emission tomography. Ann Neurol 15:170–174

    Google Scholar 

  • Chételat G, Baron JC (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. NeuroImage 18:525–541

    PubMed  Google Scholar 

  • Cho H, Choi JY, Lee HS et al (2019) Progressive tau accumulation in Alzheimer disease: 2-year follow-up study. J Nucl Med 60:1611–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choo IH, Lee DY, Youn JC et al (2007) Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Dis Assoc Disord 21:77–84

    PubMed  Google Scholar 

  • Clark CM, Schneider JA, Bedell BJ et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark LR, Berman SE, Norton D et al (2018) Age-accelerated cognitive decline in asymptomatic adults with csf β-amyloid. Neurology 90:E1306–E1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crary JF, Trojanowski JQ, Schneider JA et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delacourte A, David JP, Sergeant N et al (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165

    CAS  PubMed  Google Scholar 

  • Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner M, Aisen PS (2017) Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317:2305–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert J-C (2019) The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 138:221–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois B, Albert ML (2004) Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol 3:246–248

    PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    PubMed  Google Scholar 

  • Dubois B, Hampel H, Feldman HH et al (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12:292–323

    PubMed  PubMed Central  Google Scholar 

  • Dubois B, Epelbaum S, Nyasse F et al (2018) Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol 17:335–346

    CAS  PubMed  Google Scholar 

  • Duyckaerts C, Hauw JJ (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369

    CAS  PubMed  Google Scholar 

  • Engelborghs S, De Vreese K, Van de Casteele T et al (2008) Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging 29:1143–1159

    PubMed  Google Scholar 

  • Ferris SH, de Leon MJ, Wolf AP et al (1980) Positron emission tomography in the study of aging and senile dementia. Neurobiol Aging 1:127–131

    CAS  PubMed  Google Scholar 

  • Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8:189–202

    CAS  PubMed  Google Scholar 

  • Frisoni GB, Ritchie C, Carrera E et al (2019) Re-aligning scientific and lay narratives of Alzheimer’s disease. Lancet Neurol 18:918–919

    PubMed  Google Scholar 

  • Galluzzi S, Geroldi C, Ghidoni R et al (2010) The new Alzheimer’s criteria in a naturalistic series of patients with mild cognitive impairment. J Neurol 257:2004–2014

    CAS  PubMed  Google Scholar 

  • Galton CJ, Gomez-Anson B, Antoun N et al (2001) Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 70:165–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett MD (2018) A critique of the 2018 National Institute on Aging’s. Research framework: toward a biological definition of Alzheimer’s disease. Curr Neurobiol 9:49–58

    Google Scholar 

  • Glymour MM, Brickman AM, Kivimaki M et al (2018) Will biomarker-based diagnosis of Alzheimer’s disease maximize scientific progress? Evaluating proposed diagnostic criteria. Eur J Epidemiol 33:607–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanseeuw BJ, Betensky RA, Jacobs HIL et al (2019) Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol 76:915–924

    PubMed Central  PubMed  Google Scholar 

  • Hanseeuw BJ, Scott MR, Sikkes S et al (2020) Evolution of anosognosia in Alzheimer’s disease and its relationship to amyloid. Ann Neurol 87:267–280

    CAS  PubMed  Google Scholar 

  • Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234

    CAS  PubMed  Google Scholar 

  • Harrison TM, La Joie R, Maass A et al (2019) Longitudinal tau accumulation and atrophy in aging and alzheimer disease. Ann Neurol 85:229–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Guo JL, McBride JD et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38

    CAS  PubMed  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    PubMed  PubMed Central  Google Scholar 

  • Iacono D, Resnick SM, O’Brien R et al (2014) Mild cognitive impairment and asymptomatic Alzheimer disease subjects. J Neuropathol Exp Neurol 73:295–304

    CAS  PubMed  Google Scholar 

  • Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    PubMed  PubMed Central  Google Scholar 

  • Isaac M, Vamvakas S, Abadie E, Jonsson B, Gispen C, Pani L (2011) Qualification opinion of novel methodologies in the predementia stage of Alzheimer’s disease: cerebro-spinal-fluid related biomarkers for drugs affecting amyloid burden - regulatory considerations by European Medicines Agency focusing in improving benefit/risk in regulatory trials. Eur Neuropsychopharmacol 21:781–788

    CAS  PubMed  Google Scholar 

  • Jack CR (2020) Preclinical Alzheimer’s disease: a valid concept. Lancet Neurol 19:31

    PubMed  Google Scholar 

  • Jack CRJ, Wiste HJ, Vemuri P et al (2010a) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133:3336–3348

    PubMed  PubMed Central  Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ et al (2010b) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CRJ, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer Dement J Alzheimer Assoc 7:257–262

    Google Scholar 

  • Jack CR, Bennett DA, Blennow K et al (2016a) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CR, Therneau TM, Wiste HJ et al (2016b) Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study. Lancet Neurol 15:56–64

    CAS  PubMed  Google Scholar 

  • Jack CR, Bennett DA, Blennow K et al (2018a) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    PubMed  PubMed Central  Google Scholar 

  • Jack CR, Wiste HJ, Schwarz CG et al (2018b) Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 141:1517–1528

    PubMed  PubMed Central  Google Scholar 

  • Jack C, Holtzman D, Sperling R (2019a) Dementia is not synonymous with Alzheimer’s disease. Sci Transl Med 11:2–4

    Google Scholar 

  • Jack CRJ, Wiste HJ, Therneau TM et al (2019b) Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. JAMA 321:2316–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Jager CA, Honey TE, Birks J, Wilcock GK (2010) Retrospective evaluation of revised criteria for the diagnosis of Alzheimer’s disease using a cohort with post-mortem diagnosis. Int J Geriatr Psychiatry 25:988–997

    PubMed  Google Scholar 

  • Jagust W, Jack CR, Bennett DA et al (2019) “Alzheimer’s disease” is neither “Alzheimer’s clinical syndrome” nor “dementia”. Alzheimers Dement 15:153–157

    PubMed  Google Scholar 

  • Jang KT, Choe GY, Suh YL, Chi JG (1999) Cerebral amyloid angiopathy: a report of two cases. Korean J Pathol 33:741–744

    Google Scholar 

  • Jelic V, Kivipelto M, Winblad B (2006) Clinical trials in mild cognitive impairment: lessons for the future. J Neurol Neurosurg Psychiatry 77:429–438

    CAS  PubMed  Google Scholar 

  • Jicha GA, Parisi JE, Dickson DW et al (2006) Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 63:674

    PubMed  Google Scholar 

  • Katzman R (1976) The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol 33:217–218

    CAS  PubMed  Google Scholar 

  • Katzman R, Kawas CH (1994) The epidemiology of dementia and Alzheimer disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer disease. Ravens Press, New York, NY, pp 105–122

    Google Scholar 

  • Katzman R, Terry R, DeTeresa R et al (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144

    CAS  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    CAS  PubMed  Google Scholar 

  • Knopman DS, Gottesman RF, Sharrett AR et al (2016) Mild cognitive impairment and dementia prevalence: The Atherosclerosis Risk in Communities neurocognitive study. Alzheimer Dement Diagnosis Assess Dis Monit 2:1–11

    Google Scholar 

  • Koivunen J, Scheinin N, Virta JR et al (2011) Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 76:1085–1090

    CAS  PubMed  Google Scholar 

  • Kraepelin E (1910) Psychiatrie. In: Ein Lehrbuch für Studierende und Ärzte. II. Bd., Klinische Psychiatrie, 8th edn. Barth, Leipzig

    Google Scholar 

  • Langa KM, Burke JF (2019) Preclinical Alzheimer disease - early diagnosis or overdiagnosis? JAMA Intern Med 179:1161–1162

    PubMed  Google Scholar 

  • Lilamand M, Cesari M, Cantet C, Andrieu S (2019) Relation entre dépôts amyloïdes cérébraux et autonomie pour les activités instrumentales de la vie quotidienne des sujets âgés. Geriatr Psychol Neuropsychiatr Du Vieil 17(2):211

    Google Scholar 

  • Lim YY, Kalinowski P, Pietrzak RH et al (2018) Association of ß-Amyloid and apolipoprotein e e4 with memory decline in preclinical Alzheimer disease. JAMA Neurol 75:488–494

    PubMed  Google Scholar 

  • Louie R (2019) The 2018 NIA-AA research framework: recommendation and comments. Alzheimers Dement 15:182–183

    PubMed  Google Scholar 

  • Lowe VJ, Bruinsma TJ, Min HK et al (2018) Elevated medial temporal lobe and pervasive brain tau-PET signal in normal participants. Alzheimer Dement Diagnosis Assess Dis Monit 10:210–216

    Google Scholar 

  • Machulda MM, Hagen CE, Wiste HJ et al (2017) Practice effects and longitudinal cognitive change in clinically normal older adults differ by Alzheimer imaging biomarker status. Clin Neuropsychol 31:99–117

    PubMed  Google Scholar 

  • Matthews FE, Stephan BC, Bond J, McKeith I, Brayne C (2007) Operationalization of mild cognitive impairment: a graphical approach. PLoS Med 4:1615–1619

    PubMed  Google Scholar 

  • Mattsson N, Smith R, Strandberg O et al (2018) Comparing 18 F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 90:E388–E395

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCleery J, Flicker L, Richard E, Quinn TJ (2019a) When is Alzheimer’s not dementia - Cochrane commentary on the National Institute on Ageing and Alzheimer’s Association Research Framework for Alzheimer’s disease. Age Ageing 48:174–177

    PubMed  Google Scholar 

  • McCleery J, Flicker L, Richard E, Quinn TJ (2019b) The National Institute on Aging and Alzheimer’s Association research framework: a commentary from the Cochrane Dementia and Cognitive Improvement Group. Alzheimers Dement 15:179–181

    PubMed  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EMM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–939

    CAS  PubMed  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    PubMed  PubMed Central  Google Scholar 

  • Medina M, Khachaturian ZS, Rossor M, Avila J, Cedazo-Minguez A (2017) Toward common mechanisms for risk factors in Alzheimer’s syndrome. Alzheimers Dement (N Y) 3:571. https://doi.org/10.1016/j.trci.2017.08.009

    Article  Google Scholar 

  • Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119:252–265

    CAS  PubMed  Google Scholar 

  • Monsell SE, Mock C, Hassenstab J et al (2014) Neuropsychological changes in asymptomatic persons with Alzheimer disease neuropathology. Neurology 83:434–440

    PubMed  PubMed Central  Google Scholar 

  • Mormino EC, Betensky RA, Hedden T et al (2014) Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol 71:1379–1385

    PubMed  PubMed Central  Google Scholar 

  • Mormino EC, Papp KV, Rentz DM et al (2017) Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β. Alzheimers Dement 13:1004–1012

    PubMed  PubMed Central  Google Scholar 

  • Morris JC, Roe CM, Grant EA et al (2009) Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 66:1469–1475

    PubMed  PubMed Central  Google Scholar 

  • Morris GP, Clark IA, Vissel B (2018) Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol 136:663–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer JA (2012) The Nun Study: risk factors for pathology and clinical-pathologic correlations. Curr Alzheimer Res 9:621–627

    CAS  PubMed  Google Scholar 

  • Mozersky J, Sankar P, Harkins K, Hachey S, Karlawish J (2018) Comprehension of an elevated amyloid positron emission tomography biomarker result by cognitively normal older adults. JAMA Neurol 75:44–50

    PubMed  Google Scholar 

  • Mufson EJ, Malek-Ahmadi M, Snyder N, Ausdemore J, Chen K, Perez SE (2016) Braak stage and trajectory of cognitive decline in noncognitively impaired elders. Neurobiol Aging 43:101–110

    PubMed  PubMed Central  Google Scholar 

  • Ossenkoppele R, Tolboom N, Foster-Dingley JC et al (2012) Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging 39:990–1000

    CAS  PubMed  Google Scholar 

  • Palmer K, Backman L, Winblad B, Fratiglioni L (2008) Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. Am J Geriatr Psychiatry 16:603–611

    PubMed  Google Scholar 

  • Parnetti L, Chipi E, Salvadori N, D’Andrea K, Eusebi P (2019) Prevalence and risk of progression of preclinical Alzheimer’s disease stages: a systematic review and meta-analysis. Alzheimers Res Ther 11:1–13

    Google Scholar 

  • Perez-Nievas BG, Stein TD, Tai HC et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136:2510–2526

    PubMed  PubMed Central  Google Scholar 

  • Perneczky R, Kempermann G, Korczyn AD et al (2019) Translational research on reserve against neurodegenerative disease: consensus report of the International Conference on Cognitive Reserve in the Dementias and the Alzheimer’s Association Reserve, Resilience and Protective Factors Professional Interest Area Working Groups. BMC Med 17:1–15

    Google Scholar 

  • Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13:45–53

    PubMed  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    CAS  PubMed  Google Scholar 

  • Petersen RC, Doody R, Kurz A et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    CAS  PubMed  Google Scholar 

  • Petersen RC, Wiste HJ, Weigand SD et al (2016) Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol 73:85–92

    PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Jacobs DM, Messer K, Salmon DP, Feldman HH (2019) Cognitive heterogeneity in probable Alzheimer disease: clinical and neuropathologic features. Neurology 93:E778–E790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovici GD, Carrillo MC (2019) Biomarker-informed treatment decisions in cognitively impaired patients do not apply to preclinical Alzheimer disease. JAMA Intern Med 179:1736–1737

    PubMed  Google Scholar 

  • Raj A, LoCastro E, Kuceyeski A, Tosun D, Relkin N, Weiner M (2015) Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease. Cell Rep 10:359–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiman EM, Chen K, Alexander GE et al (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A 101:284–289

    CAS  PubMed  Google Scholar 

  • Reisberg B, Ferris SH, Kluger A, Franssen E, Wegiel J, de Leon MJ (2008) Mild cognitive impairment (MCI): a historical perspective. Int Psychogeriatr 20:18–31

    PubMed  Google Scholar 

  • Resnick SM, Sojkova J, Zhou Y et al (2010) Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 74:807–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild D, Trainor MA (1937) Pathologic changes in senile psychoses and their psychobiologic significance. Am J Psychiatr 93:757. https://doi.org/10.1176/ajp.93.4.757

    Article  Google Scholar 

  • Saint Jean O, Favereau E (2018) Alzheimer, le grand leurre. Michalon, Paris

    Google Scholar 

  • Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in ‘probable’ Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schermer MHN, Richard E (2019) On the reconceptualization of Alzheimer’s disease. Bioethics 33:138–145

    PubMed  Google Scholar 

  • Schoonenboom NSM, van der Flier WM, Blankenstein MA et al (2008) CSF and MRI markers independently contribute to the diagnosis of Alzheimer’s disease. Neurobiol Aging 29:669–675

    CAS  PubMed  Google Scholar 

  • Seab JP, Jagust WJ, Wong STS, Roos MS, Reed BR, Budinger TF (1988) Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 8:200–208

    CAS  PubMed  Google Scholar 

  • Seppälä TT, Nerg O, Koivisto AM et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78:1568–1575

    PubMed  Google Scholar 

  • Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    PubMed  PubMed Central  Google Scholar 

  • Sperling RA, Mormino EC, Schultz AP et al (2019) The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann Neurol 85:181–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley K, Stevens T, Walker Z (2019) The use of biomarkers in Alzheimer’s disease: a case report. Prog Neurol Psychiatry 23:10–14

    Google Scholar 

  • Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, ‘Uber eine eigenartige Erkankung der Hirnrinde’. Clin Anat 8:429–431

    PubMed  Google Scholar 

  • Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11:1006–1012

    PubMed  PubMed Central  Google Scholar 

  • Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D et al (2018) Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement S1552–5260:33491–33495

    Google Scholar 

  • Stomrud E, Hansson O, Blennow K, Minthon L, Londos E (2007) Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord 24:118–124

    CAS  PubMed  Google Scholar 

  • Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Aß 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60:652–656

    CAS  PubMed  Google Scholar 

  • Swanson CJ, Zhang Y, Dhadda S et al (2018) Treatment of early AD subjects with BAN2401, an anti-Aβ protofibril monoclonal antibody, significantly clears amyloid plaque and reduces clinical decline. Alzheimers Dement 14:P1668

    Google Scholar 

  • Sweeney MD, Montagne A, Sagare AP et al (2019) Vascular dysfunction—the disregarded partner of Alzheimer’s disease. Alzheimers Dement 15:158–167

    PubMed  PubMed Central  Google Scholar 

  • Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389

    PubMed  Google Scholar 

  • Van De Pol LA, Hensel A, Van Der Flier WM et al (2006) Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:439–442

    PubMed  Google Scholar 

  • Varma AR, Snowden JS, Lloyd JJ, Talbot PR, Mann DM, Neary D (1999) Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 66:184–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villain N, Dubois B (2019) Alzheimer’s disease including focal presentations. Semin Neurol 39:213–226

    PubMed  Google Scholar 

  • Villemagne VL, Burnham S, Bourgeat P et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367

    CAS  PubMed  Google Scholar 

  • Whitehouse PJ, George D, Daniel R (2008) The myth of Alzheimer’s: what you aren’t being told about today’s most dreaded diagnosis. St. Martin’s Press, New York, NY

    Google Scholar 

  • Younes L, Albert M, Moghekar A, Soldan A, Pettigrew C, Miller MI (2019) Identifying changepoints in biomarkers during the preclinical phase of Alzheimer’s disease. Front Aging Neurosci 11:1–11

    Google Scholar 

  • Yu JT, Li JQ, Suckling J et al (2019) Frequency and longitudinal clinical outcomes of Alzheimer’s AT(N) biomarker profiles: a longitudinal study. Alzheimers Dement 15:1208–1217

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Dubois .

Editor information

Editors and Affiliations

Glossary

AD dementia

When cognitive symptoms interfere with activity of daily living.

Alzheimer’s disease (AD)

The whole clinical phase, no longer restricted to the dementia syndrome.

Alzheimer’s pathology

Underlying neurobiological changes responsible for AD

Asymptomatic at risk

Cognitively normal individuals with positive pathophysiological biomarkers.

Atypical AD

Less common but well-characterized clinical phenotypes that occur with Alzheimer’s pathology. The diagnosis of AD needs in vivo evidence of pathophysiological markers.

Mild cognitive impairment (MCI)

Patients for whom there is no disease clearly identified.

Mixed AD

Patients who fulfill the criteria for AD and additionally present with clinical and biomarkers evidence of other comorbid disorders.

Pathophysiological markers

Biological changes that reflect the underlying AD pathology (CSF changes; PET-amyloid). They are markers of diagnosis.

Prodromal AD

The early symptomatic, predementia phase of AD.

Topographical biomarkers

Downstream markers of neurodegeneration that can be structural (MRI) or metabolic (FDG-PET). They are markers of progression.

Typical AD

The most common clinical phenotype of AD, characterized by an amnestic syndrome of the hippocampal type.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubois, B., Villain, N., Jacova, C., Uspenskaya, O. (2021). Impact of the New Conceptual Framework of Alzheimer’s Disease in Imaging Studies. In: Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Leenders, K.L. (eds) PET and SPECT in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-53168-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53168-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53167-6

  • Online ISBN: 978-3-030-53168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics