Skip to main content

Geometric Series Method and Exact Solutions of Differential-Difference Equations

  • Chapter
  • First Online:
Nonlinear Dynamics of Discrete and Continuous Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 139))

Abstract

A modification of the geometric series method is considered, which is suitable for obtaining exact solutions of nonlinear differential-difference equations. The features of the method are shown in examples of solving three-point and five-point equations, the right-hand sides of which can contain polynomials, rational fractions, explicitly given elementary functions and implicitly defined functions that are solutions of some differential equations. The advantages and disadvantages of the approach are noted in comparison with other methods for constructing exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rafei, M., van Horssen, W.T.: On asymptotic approximations of first integrals for second order difference equations. Nonlinear Dyn. 61, 535–551 (2010)

    Article  MathSciNet  Google Scholar 

  2. Rafei, M., van Horssen, W.T.: Solving systems of nonlinear difference equations by the multiple scales perturbation method. Nonlinear Dyn. 69, 1509–1516 (2012)

    Article  MathSciNet  Google Scholar 

  3. Van Horssen, W.T., ter Brake, M.C.: On the multiple scales perturbation method for difference equations. Nonlinear Dyn. 55, 401–418 (2009)

    Article  MathSciNet  Google Scholar 

  4. Andrianov, I.V., van Horssen, W.T.: Analytical approximations of the period of a generalized nonlinear van der Pol oscillator. J. Sound Vib. 295(3), 1099–1104 (2006)

    Article  MathSciNet  Google Scholar 

  5. Smirnov, V.V., Manevitch, L.I., Strozzi, M., Pellicano, F.: Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations. Physica D Nonlinear Phenom. 325, 113–125 (2016)

    Google Scholar 

  6. Garifullin, R.N., Yamilov, R.I., Levi, D.: Classification of five-point differential–difference equations II. J. Phys. A Math. Theor. 51, 065204 (2018)

    Google Scholar 

  7. Gubbiotti, G.: Algebraic entropy of a class of five-point differential-difference equations. Symmetry 11(3), 432 (2019)

    Article  Google Scholar 

  8. Baldwin, D., Goktas, U., Hereman, W.: Symbolic computation of hyperbolic tangent solutions for nonlinear differential–difference equations. Comput. Phys. Comm. 162(3), 203–217 (2004)

    Google Scholar 

  9. Bochkarev, A.V., Zemlyanukhin, A.I.: The geometric series method for constructing exact solutions to nonlinear evolution equations. Comp. Math. Math. Phys. 57(7), 1111–1123 (2017)

    Article  MathSciNet  Google Scholar 

  10. Zemlyanukhin, A.I., Bochkarev, A.V.: Perturbation method, Pade approximants and exact solutions of nonlinear mechanics equations. Materials Phys. Mech. 35(1), 181–189 (2018)

    Google Scholar 

  11. Hirota, R.: Exact solution of the Korteweg – de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Google Scholar 

  12. Yamilov, R.: Symmetries as integrability criteria for differential-difference equations. J. Phys. A Math. Gen. 39, R541–R623 (2006)

    Article  MathSciNet  Google Scholar 

  13. Baker Jr., G.A., Graves-Morris, P.: Pade Approximants. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  14. Adler, V.E.: Integrable Möbius invariant evolutionary lattices of second order. arXiv:1605.00018 (2016)

  15. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 20-01-00123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr I. Zemlyanukhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zemlyanukhin, A.I., Bochkarev, A.V., Orlova, A.A., Ratushny, A.V. (2021). Geometric Series Method and Exact Solutions of Differential-Difference Equations. In: Abramian, A.K., Andrianov, I.V., Gaiko, V.A. (eds) Nonlinear Dynamics of Discrete and Continuous Systems. Advanced Structured Materials, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-53006-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53006-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53005-1

  • Online ISBN: 978-3-030-53006-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics