Skip to main content

The Stability of Non-linear Power Systems

  • Chapter
  • First Online:
Nonlinear Dynamics of Discrete and Continuous Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 139))

  • 590 Accesses

Abstract

The power system is one of the most complicated man-made non-linear systems which plays an important role for human being since it was first made in the 19th century. In the past decade, the integration of renewable power sources such as wind energy and solar energy has increased rapidly due to their sustainability. However, these energy sources are weather dependent which cannot be controlled or even predicted precisely. A challenge brought by this transition to renewable power generation is the uncertain fluctuations that negatively affects the stability of the power system, which leads to the important problem: how to improve by control the stability of the system such that it remains stable when subjected to considerable fluctuations in the energy supply? Hence, research is needed into the stability metrics of the non-linear power system and control strategies for the stability improvement. In this chapter, we describe the linear and non-linear stability analysis of power systems and summarize the corresponding control strategies for stability improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P.M., Fouad, A.A.: Power System Control and Stability. Wiley-IEEE Press (2002)

    Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  3. Baillieul, J., Byrnes, C.: Geometric critical point analysis of lossless power system models. IEEE Trans. Circuits Syst. 29(11), 724–737 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bergen, A.R., Hill, D.J.: A structure preserving model for power system stability analysis. IEEE Trans. Power App. Syst. 1, 25–35 (1981)

    Article  Google Scholar 

  5. Braess, D.: Uber ein paradoxon aus der verkehrsplanung. Unternehmensforschung Operations Research 12 (1968)

    Google Scholar 

  6. Bronski, J.C., DeVille, L.: Spectral theory for dynamics on graphs containing attractive and repulsive interactions. SIAM J. Appl. Math. 74(1), 83–105 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chang, H.D., Chu, C.C., Cauley, G.: Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective. Proc. IEEE 83(11), 1497–1529 (1995)

    Article  Google Scholar 

  8. Chen, T., Davis, R., Mehta, D.: Counting equilibria of the kuramoto model using birationally invariant intersection index. SIAM J. Appl. Algebra Geometry 2(4), 489–507 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chiang, H.D., Chu, C.C.: Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system. Models with small transfer conductances. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 42(5), 252–265 (1995)

    Google Scholar 

  10. Chiang, H.D., Wu, F.F., Varaiya, P.P.: Foundations of the potential energy boundary surface method for power system transient stability analysis. IEEE Trans. Circuits Syst. 35(6), 712–728 (1988)

    Google Scholar 

  11. Chiang, H.D., Hirsch, M.W., Wu, F.F.: Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Autom. Control 33(1), 16–27 (1988)

    Article  MathSciNet  Google Scholar 

  12. Coletta, T., Jacquod, P.: Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids. Phys. Rev. E 93(3), 032222 (2016)

    Article  MathSciNet  Google Scholar 

  13. Delabays, R., Coletta, T., Jacquod, P.: Multistability of phase-locking and topological winding numbers in locally coupled kuramoto models on single-loop networks. J. Math. Phys. 57(3) (2016)

    Google Scholar 

  14. Dörfler, F., Bullo, F.: On the critical coupling for kuramoto oscillators. SIAM J. Appl. Dynam. Syst. 10(3), 1070–1099 (2011)

    Article  MathSciNet  Google Scholar 

  15. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dörfler, F., Simpson-Porco, J.W., Bullo, F.: Breaking the hierarchy: distributed control and economic optimality in microgrids. IEEE Trans. Control Netw. Syst. 3(3), 241–253 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hasler, M., Wang, C., Ilic, M., Zobian, A.: Computation of static stability margins in power systems using monotonicity. In: 1993 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 2196–2199, May 1993

    Google Scholar 

  18. Ilić, M.D., Zaborszky, J.: Dynamics and Control of Large Electric Power Systems. Wiley (2000)

    Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey 07458 (2002)

    Google Scholar 

  20. Khayat, Y., Shafiee, Q., Heydari, R., Naderi, M., Dragicevic, T., Simpson-Porco, J.W., Dorfler, F., Fathi, M., Blaabjerg, F., Guerrero, J.M., Bevrani, H.: On the secondary control architectures of ac microgrids: an overview. IEEE Trans. Power Electron. 1–1 (2019)

    Google Scholar 

  21. Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph laplacian. IEEE Trans. Autom. Control 51(1), 116–120 (2006)

    Article  MathSciNet  Google Scholar 

  22. Kundur, P.: Power System Stability and Control. McGraw-Hill (1994)

    Google Scholar 

  23. Lee, J., Chiang, H.D.: A singular fixed-point homotopy method to locate the closest unstable equilibrium point for transient stability region estimate. IEEE Trans. Circuits Syst. II, Exp. Briefs 51(4), 185–189 (2004)

    Google Scholar 

  24. Liu, C.W., Thorp, J.S.: A novel method to compute the closest unstable equilibrium point for transient stability region estimate in power systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(7), 630–635 (1997)

    Google Scholar 

  25. Lozano, S., Buzna, L., Díaz-Guilera, A.: Role of network topology in the synchronization of power systems. Eur. Phys. J. B 85(7), 231 (2012)

    Article  Google Scholar 

  26. Luxemburg, L.A., Huang, G.: On the number of unstable equilibria of a class of nonlinear systems. In: 26th IEEE Conference Decision Control, vol. 20, pp. 889–894. IEEE (1987)

    Google Scholar 

  27. Manik, D., Timme, M., Witthaut, D.: Cycle flows and multistability in oscillatory networks. Chaos 27(8), 083123 (2017)

    Article  MathSciNet  Google Scholar 

  28. Marris, E.: Energy: upgrading the grid. Nature 454, 570–573 (2008)

    Article  Google Scholar 

  29. Mehta, D., Daleo, N.S., Dörfler, F., Hauenstein, J.D.: Algebraic geometrization of the Kuramoto model: equilibria and stability analysis. Chaos 25(5), 053103 (2015)

    Google Scholar 

  30. Mehta, D., Nguyen, H.D., Turitsyn, K.: Numerical polynomial homotopy continuation method to locate all the power flow solutions. IET Gener. Transm. Distrib. 10(12), 2972–2980 (2016)

    Article  Google Scholar 

  31. Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014)

    Google Scholar 

  32. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9(2), 89–92 (2013)

    Google Scholar 

  33. Milano, F.: Power Systems Analysis Toolbox. University of Castilla, Castilla-La Mancha, Spain (2008)

    Google Scholar 

  34. Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nat. Phys. 9(3), 191–197 (2013)

    Article  Google Scholar 

  35. Nishikawa, T., Molnar, F., Motter, A.E.: Stability landscape of power-grid synchronization. IFAC-PapersOnLine 48(18), 1–6 (2015). 4th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS 2015

    Google Scholar 

  36. Nishikawa, T., Motter, A.E.: Comparative analysis of existing models for power-grid synchronization. New J. Phys. 17(1), 015012 (2015)

    Article  Google Scholar 

  37. Nusse, H.E., Yorke, J.A.: Basins of attraction. Science 271(5254), 1376–1380 (1996)

    Article  MathSciNet  Google Scholar 

  38. Ochab, J., Góra, P.F.: Synchronization of coupled oscillators in a local one-dimensional Kuramoto model. Acta. Phys. Pol. B Proc. Suppl. 3, 453–462 (2010)

    Google Scholar 

  39. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Article  Google Scholar 

  40. Rogge, J.A., Aeyels, D.: Stability of phase locking in a ring of unidirectionally coupled oscillators. J. Phys. A Math. Gen. 37(46), 11135–11148 (2004)

    Article  MathSciNet  Google Scholar 

  41. Rohden, M., Sorge, A., Witthaut, D., Timme, M.: Impact of network topology on synchrony of oscillatory power grids. Chaos 24(1), 013123 (2014)

    Article  MathSciNet  Google Scholar 

  42. Schavemaker, P., van der Sluis, L.: Electrical Power System Essentials. Wiley (2008)

    Google Scholar 

  43. Schiffer, J., Goldin, D., Raisch, J., Sezi, T.: Synchronization of droop-controlled microgrids with distributed rotational and electronic generation. In: 52nd IEEE Conference Decision and Control, pp. 2334–2339, Dec 2013

    Google Scholar 

  44. Schiffer, J., Ortega, R., Astolfi, A., Raisch, J., Sezi, T.: Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50(10), 2457–2469 (2014)

    Article  MathSciNet  Google Scholar 

  45. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: Voltage collapse in complex power grids. Nat. Commun. 7, 10790 (2016)

    Article  Google Scholar 

  46. Skar, S.J.: Stability of multi-machine power systems with nontrivial transfer conductances. SIAM J. Appl. Math. 39(3), 475–491 (1980)

    Article  MathSciNet  Google Scholar 

  47. Skardal, P.S., Taylor, D., Sun, J.: Optimal synchronization of complex networks. Phys. Rev. Lett. 113(14), 144101 (2014)

    Google Scholar 

  48. Tchuisseu, E.B.T., Gomila, D., Colet, P., Witthaut, D., Timme, M., Schäfer, B.: Curing braess’ paradox by secondary control in power grids. New J. Phys. 20(8), 083005 (2018)

    Google Scholar 

  49. Treinen, R.T., Vittal, V., Kliemann, W.: An improved technique to determine the controlling unstable equilibrium point in a power system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43(4), 313–323 (1996)

    Google Scholar 

  50. Van Mieghem, P.: Graph Spectra of Complex Networks. Cambridge University Press (2008)

    Google Scholar 

  51. Varaiya, P.P., Wu, F.F., Chen, R.L.: Direct methods for transient stability analysis of power systems: recent results. Proc. IEEE 73(12), 1703–1715 (1985)

    Article  Google Scholar 

  52. Witthaut, D., Timme, Marc: Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14(8), 083036 (2012)

    Article  Google Scholar 

  53. Wood, A.J., Wollenberg, B.F., Sheble, G.B.: Power Generation, Operation, and Control, 3rd edn. Wiley-IEEE, Hoboken, New Jersey (2013)

    Google Scholar 

  54. Xi, K., Lin, H.X., Shen, C., van Schuppen, J.H.: Multi-level power-imbalance allocation control for secondary frequency control of power systems. IEEE Trans. Autom. Control, pp 1 (2019)

    Google Scholar 

  55. Xi, K., Dubbeldam, J.L.A., Lin, H.X.: Synchronization of cyclic power grids: equilibria and stability of the synchronous state. Chaos 27(1), 013109 (2017)

    Article  Google Scholar 

  56. Xi, K., Dubbeldam, J.L.A., Lin, H.X., van Schuppen, J.H.: Power imbalance allocation control of power systems-secondary frequency control. Automatica 92, 72–85 (2018)

    Article  MathSciNet  Google Scholar 

  57. Zaborsky, J., Huang, G., Leung, T.C., Zheng, B.: Stability monitoring on the large electric power system. In: 24th IEEE Conference Decision Control, vol. 24, pp. 787–798. IEEE (1985)

    Google Scholar 

  58. Zaborszky, J., Huang, G., Zheng, B., Leung, T.C.: On the phase portrait of a class of large nonlinear dynamic systems such as the power system. IEEE Trans. Autom. Control 33(1), 4–15 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaihua Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xi, K., Dubbeldam, J.L.A., Gao, F., Lin, H.X., van Schuppen, J.H. (2021). The Stability of Non-linear Power Systems. In: Abramian, A.K., Andrianov, I.V., Gaiko, V.A. (eds) Nonlinear Dynamics of Discrete and Continuous Systems. Advanced Structured Materials, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-53006-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53006-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53005-1

  • Online ISBN: 978-3-030-53006-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics