Skip to main content

Relay Selection Exploiting Genetic Algorithms for Multi-hop Device-to-Device Communication

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2019)

Abstract

Device-to-device (D2D) communication allows a direct transmission between two devices. In this way, cellular user equipment’s are not always obliged to route the data conventionally through a cellular base station. This paper focuses on multi-hop D2D communication, where D2D relays are exploited to delivery of data from a source to a destination. We propose a novel algorithm that finds the most suitable path between the D2D source and destination so that the capacity of multi-hop communication is maximized. The appropriate route is found via Genetic Algorithm (GA) with an ordered crossover. The simulation results show that the proposed algorithm improves the capacity of multi-hop D2D communication from a source to a destination compared to an existing relay selection algorithm by 20–61%. We also show that the proposed solution converges fast enough to be beneficial even in realistic mobile networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tehrani, M.N., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in 5g cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52(5), 86–92 (2014)

    Article  Google Scholar 

  2. Asadi, A., Wang, Q., Mancuso, V.: A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutorials 16(4), 1801–1819 (2014)

    Article  Google Scholar 

  3. Liu, T., Lui, J.C., Ma, X., Jiang, H.: Enabling relay-assisted D2D communication for cellular networks: algorithm and protocols. IEEE Internet Things J. 5(4), 3136–3150 (2018)

    Article  Google Scholar 

  4. Wang, L., Peng, T., Yang, Y., Wang, W.: Interference constrained D2D communication with relay underlaying cellular networks. In: 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE, September 2013

    Google Scholar 

  5. Zhou, K., Gui, J., Xiong, N.: Improving cellular downlink throughput by multi-hop relay-assisted outband D2D communications. EURASIP Journal on Wireless Communications and Networking 2017(1), 1–23 (2017). https://doi.org/10.1186/s13638-017-0998-9

    Article  Google Scholar 

  6. Shaikh, F.S., Wismuller, R.: Routing in multi-hop cellular device-to-device (D2D) networks: a survey. IEEE Commun. Surv. Tutorials 20(4), 2622–2657 (2018)

    Article  Google Scholar 

  7. Dang, S., Chen, G., Coon, J.P.: Multicarrier relay selection for full-duplex relay-assisted OFDM D2D systems. IEEE Trans. Veh. Technol. 67(8), 7204–7218 (2018)

    Article  Google Scholar 

  8. Ebrahimi, D., Elbiaze, H., Ajib, W.: Device-to-device data transfer through multihop relay links underlaying cellular networks. IEEE Trans. Veh. Technol. 67(10), 9669–9680 (2018)

    Article  Google Scholar 

  9. Yu, Z., Ni, M., Wang, Z., Zhang, Y.: Dynamic route guidance using improved genetic algorithms. Math. Probl. Eng. 2013 (2013)

    Google Scholar 

  10. Zhu, X., Luo, W., Zhu, T.: An improved genetic algorithm for dynamic shortest path problems. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2093–2100. IEEE, July 2014

    Google Scholar 

  11. Nayak, P., Vathasavai, B.: Genetic algorithm based clustering approach for wireless sensor network to optimize routing techniques. In: 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, pp. 373–380. IEEE (2017)

    Google Scholar 

  12. Apetroaei, I., Oprea, I.-A., Proca, B.-E., Gheorghe, L.: Genetic algorithms applied in routing protocols for wireless sensor networks. In: 2011 RoEduNet International Conference 10th Edition: Networking in Education and Research, pp. 1–6. IEEE (2011)

    Google Scholar 

  13. Sharma, Y., Saini, S.C., Bhandhari, M.: Comparison of Dijkstra’s shortest path algorithm with genetic algorithm for static and dynamic routing network. Int. J. Electr. Comput. Sci. Eng. 1(2), 416–425 (2012)

    Google Scholar 

  14. Yang, C., Xu, X., Han, J., Tao, X.: GA based user matching with optimal power allocation in D2D underlaying network. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2014)

    Google Scholar 

  15. Vlachos, C., Elshaer, H., Chen, J., Friderikos, V., Dohler, M.: Bioinspired resource allocation for relay-aided device-to-device communications. In: 2016 IEEE 84th Vehicular Technology Conference (VTCFall), pp. 1–6. IEEE (2016)

    Google Scholar 

  16. Abdoun, O., Abouchabaka, J.: A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. arXiv preprint arXiv:1203.3097 (2012)

  17. Lin, X., Andrews, J.G., Ghosh, A., Ratasuk, R.: An overview of 3GPP device-to-device proximity services. IEEE Commun. Mag. 52(4), 40–48 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by grant No. GA17-17538S funded by Czech Science Foundation and by the grant of Czech Technical University in Prague No. SGS17/184/OHK3/3T/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toha Ardi Nugraha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nugraha, T.A., Becvar, Z., Mach, P. (2020). Relay Selection Exploiting Genetic Algorithms for Multi-hop Device-to-Device Communication. In: Deng, DJ., Pang, AC., Lin, CC. (eds) Wireless Internet. WiCON 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-52988-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52988-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52987-1

  • Online ISBN: 978-3-030-52988-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics