Skip to main content

Connectome 2.0: Cutting-Edge Hardware Ushers in New Opportunities for Computational Diffusion MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The first phase of the Human Connectome Project pioneered advances in MRI technology, including ultra-high gradients and accelerated sequences, that have now found their way into commercially available scanners. These technologies have led to a dramatic improvement in the spatial, angular, and diffusion resolution that is feasible in vivo. However, they still fall short of the scale where the microstructural properties of cells in the human brain can be measured accurately. Here we present an overview of the Connectome 2.0 project, which aims to bridge this gap by building the next-generation instrument for imaging microstructure and connectional anatomy in the human brain.

This work is supported by NIH/NIBIB award U01-EB026996.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Setsompop, K., et al.: Pushing the limits of in vivo diffusion MRI for the human connectome project. Neuroimage 80, 220–33 (2013)

    Google Scholar 

  2. Huang, S.Y., et al.: The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 106, 464–72 (2015)

    Article  Google Scholar 

  3. Huang, S.Y., et al.: High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct. Funct. 225(4), 1277–1291 (2020)

    Google Scholar 

  4. Davids, M., et al.: Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models. Sci. Rep. 7(1), 5316 (2017)

    Google Scholar 

  5. Wilm, B.J., et al.: Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn. Reson. Med. 65(6), 1690–701 (2011)

    Google Scholar 

  6. Keil, B., et al.: A 64-channel 3T array coil for accelerated brain MRI. Magn. Reson. Med. 70(1), 248–58 (2013)

    Google Scholar 

  7. Keil, B. et al.: A 64-channel array coil for 3T head/neck/C-spine imaging. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 160 (2011)

    Google Scholar 

  8. Scholz, A. et al.: A 48-channel ex vivo brain array coil for diffusion-weighted MRI at 3T. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 1494 (2019)

    Google Scholar 

  9. Setsompop, K., et al.: High-resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider-SMS). Magn. Reson. Med. 79(1), 141–151 (2018)

    Google Scholar 

  10. Assaf, Y., et al.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008)

    Google Scholar 

  11. Nilsson, M., et al.: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion. NMR Biomed. 30(7), (2017)

    Google Scholar 

  12. Waxman, S.G., et al.: The Axon: Structure. Function and Pathophysiology. Oxford University Press, New York (1995)

    Google Scholar 

  13. Drobnjak, I., et al.: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study. Magn. Reson. Med. 75(2), 688–700 (2016)

    Google Scholar 

  14. McNab, J.A., et al.: Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage 69, 87–100 (2013)

    Article  Google Scholar 

  15. Gabrieli, J.D.E., et al.: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85(1), 11–26 (2015)

    Article  Google Scholar 

  16. Safadi, Z., et al.: Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J. Neurosci. 38(8), 2106–17 (2018)

    Article  Google Scholar 

  17. Jones, R.J., et al.: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain. NeuroImage 214, 116704 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Yendiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yendiki, A., Witzel, T., Huang, S.Y. (2020). Connectome 2.0: Cutting-Edge Hardware Ushers in New Opportunities for Computational Diffusion MRI. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_1

Download citation

Publish with us

Policies and ethics