Skip to main content

Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

The retinal and cerebral microvasculatures share many morphological and physiological properties. In this pilot we study the strength of the associations between morphological measurements of the retinal vasculature, obtained from fundus camera images, and of features of Small Vessel Disease (SVD), as white matter hyperintensities (WMH) and perivascular spaces (PVS), obtained from MRI brain scans. We performed a 500-trial bootstrap analysis with Regularized Gaussian linear regression on a cohort of older community-dwelling subjects (Lothian Birth Cohort 1936, N = 866) in their eighth decade. Arteriolar bifurcation coefficients, vessel tortuosity and fractal dimension predicted WMH volume in 23% of the trials. Arteriolar widths, venular bifurcation coefficients, and venular tortuosity predicted PVS in up to 99.6% of the trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arboix, A.: Retinal microvasculature in acute lacunar stroke. Lancet Neurol. 8(7), 596–598 (2009). https://doi.org/10.1016/S1474-4422(09)70137-1

    Article  Google Scholar 

  2. Ballerini, L., et al.: Perivascular spaces segmentation in brain MRI using optimal 3D filtering. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-19781-5

  3. Ballerini, L., et al.: Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. a study in the lothian birth cohort 1936. NeuroImage: Clinical 25, 102120 (2020). https://doi.org/10.1016/j.nicl.2019.102120

  4. Bernal, J., et al.: Retrospective imaging artefact reduction improves perivascular spaces segmentation and quantification in brain magnetic resonance imaging. In: Medical Image Understanding and Analysis. Springer International Publishing (2020)

    Google Scholar 

  5. Brown, R., et al.: Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovascular Research, p. cvy113 (2018). https://doi.org/10.1093/cvr/cvy113

  6. Deary, I.J., et al.: The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr. 7, 28–28 (2007). https://doi.org/10.1186/1471-2318-7-28

    Article  Google Scholar 

  7. Doubal, F.N., et al.: Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on magnetic resonance imaging. Int J. Stroke 5(6), 434–439 (2010). https://doi.org/10.1111/j.1747-4949.2010.00483.x

    Article  Google Scholar 

  8. Doubal, F.N., Hokke, P.F., Wardlaw, J.M.: Retinal microvascular abnormalities and stroke: a systematic review. J. Neurol. Neurosurg. Psychiatry 80(2), 158–165 (2009). https://doi.org/10.1136/jnnp.2008.153460

    Article  Google Scholar 

  9. Dumitrascu, O.M., et al.: Retinal microvascular abnormalities as surrogate markers of cerebrovascular ischemic disease: a meta-analysis. J. Stroke Cerebrovasc. Dis. off. J. Natl. Stroke Assoc. 27(7), 1960–1968 (2018). https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.041

    Article  Google Scholar 

  10. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, Boca Raton (1993)

    Google Scholar 

  11. Fetit, A.E., et al.: A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features. Sci. Rep. 9(1), 3591 (2019). https://doi.org/10.1038/s41598-019-40403-1

    Article  Google Scholar 

  12. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI98), pp. 130–137 (1998). https://doi.org/10.1007/BFb0056195

  13. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). https://doi.org/10.18637/jss.v033.i01

    Article  Google Scholar 

  14. Hilal, S., et al.: Microvascular network alterations in retina of subjects with cerebral small vessel disease. Neurosci. Lett. 577, 95–100 (2014). https://doi.org/10.1016/j.neulet.2014.06.024

    Article  Google Scholar 

  15. Lindley, R.I.: Retinal microvascular signs: a key to understanding the underlying pathophysiology of different stroke subtypes? Int. J. Stroke 3(4), 297–305 (2008). https://doi.org/10.1111/j.1747-4949.2008.00215.x

  16. McGrory, S., et al.: Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study. Sci. Rep. 9(1), 6320–6320 (2019). https://doi.org/10.1038/s41598-019-42534-x

    Article  Google Scholar 

  17. McGrory, S., et al.: Towards standardization of quantitative retinal vascular parameters: comparison of SIVA and VAMPIRE measurements in the Lothian Birth Cohort 1936. Transl. Vis. Sci. Technol. 7(2), 12 (2018). https://doi.org/10.1167/tvst.7.2.12

  18. Mookiah, M.R.K., et al.: Towards standardization of retinal vascular measurements: on the effect of image centering. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 294–302. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_35

    Chapter  Google Scholar 

  19. Mutlu, U., et al.: Retinal microvascular calibers are associated with enlarged perivascular spaces in the brain. Stroke 47(5), 1374–1376 (2016). https://doi.org/10.1161/strokeaha.115.012438

    Article  Google Scholar 

  20. Patton, N., Aslam, T., Macgillivray, T., Pattie, A., Deary, I., Dhillon, B.: Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206(4), 319–348 (2005). https://doi.org/10.1111/j.1469-7580.2005.00395.x

    Article  Google Scholar 

  21. Taylor, A.M., Pattie, A., Deary, I.J.: Cohort profile update: The Lothian Birth Cohorts of 1921 and 1936. Int. J. Epidemiol. 47(4), 1042–1042r (2018). https://doi.org/10.1093/ije/dyy022

    Article  Google Scholar 

  22. Trucco, E., et al.: Novel VAMPIRE algorithms for quantitative analysis of the retinal vasculature. In: 2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), pp. 1–4 (2013). https://doi.org/10.1109/BRC.2013.6487552

  23. Trucco, E., et al.: Morphometric measurements of the retinal vasculature in fundus images with VAMPIRE. Biomedical Image Understanding, pp. 91–111 (2015)

    Google Scholar 

  24. Valdés-Hernández, M.d.C., Ferguson, K.J., Chappell, F.M., Wardlaw, J.M.: New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images. Eur. Radiol. 20(7), 1684–1691 (2010). https://doi.org/10.1007/s00330-010-1718-6

  25. Wardlaw, J.M., et al.: Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int J. Stroke 6(6), 547–559 (2011). https://doi.org/10.1111/j.1747-4949.2011.00683.x

    Article  Google Scholar 

  26. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Statistical Methodology) 67(2), 301–320 (2005)

    Google Scholar 

Download references

Acknowledgements

The LBC1936 Study (http://www.disconnectedmind.ed.ac.uk/) was funded by Age UK and the UK Medical Research Council (MR/R02462/1, MR/013111/1, G1001245, Ref. 82800) (including the Sidney De Haan Award for Vascular Dementia). Funds were also received from The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1), and the Biotechnology and Biological Sciences Research Council (BBSRC). The work was also funded by the EPSRC grant [LB EP/M005976/1], the Fondation Leducq Network for the Study of Perivascular Spaces in Small Vessel Disease [LB 16 CVD 05], the Row Fogo Charitable Trust [MVH Grant No. BROD.FID3668413], the European Union Horizon 2020 [PHC-03-15, project No 666881, “SVDs@Target”], the UK Dementia Research Institute at the University of Edinburgh and the British Heart Foundation Centre for Research Excellence, Edinburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Ballerini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballerini, L. et al. (2020). Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics