Skip to main content

Adequacy of Dialysis

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

“Adequate” dialysis is often defined as a minimum clinically acceptable dose, below which occurs an unacceptable risk of poor outcomes. The term “dialysis adequacy” has been used for several decades primarily based on the measurement of small solute clearance including urea and creatinine and the findings from landmark adult-based clinical trials. Unfortunately, there are limited outcome-based data with respect to pediatric dialysis adequacy. Consequently, adult experience and the associated target clearances have been frequently extrapolated to pediatric patients, even though this point remains a matter of controversy. Small solute clearance represents only one part of the effectiveness of dialysis depuration, which should also include the clearance of larger and/or protein-bound molecules that play an important role in uremic toxicity and are more difficult to remove. Moreover, the dialysis prescription should be adjusted in order to maintain fluid balance and normal blood pressure. The achievement of dialysis adequacy should reflect measures that comprehensively aim to reduce child’s morbidity and mortality and to maximize nutritional status, cardiovascular and bone health, growth, and patient/family health-related quality of life.

In this chapter, we discuss the tools that are available for estimating the dialysis dose delivered to pediatric patients treated with hemodialysis and peritoneal dialysis taking into account the specific metabolic, clinical, and rehabilitative needs related to differences of age, body size, residual renal function, nutritional status, and pubertal development. Formulae to estimate or calculate depuration targets are presented referring to pediatric metrics when available. Pediatric observational data related to dialysis adequacy as well as existing pediatric guidelines and recommendations are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  2. Lowrie EG, Laird NM, Parker TF, Sargent JA. Effect of the hemodialysis prescription of patient morbidity: report from the National Cooperative Dialysis Study. N Engl J Med. 1981;305(20):1176–81.

    Article  CAS  PubMed  Google Scholar 

  3. Lowrie EGLN. A simple method for evaluating hemodialysis treatment. Contemp Dial Nephrol. 1991;12(2):11–20.

    Google Scholar 

  4. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis. 2006;48(Suppl 1):S2–90.

    Google Scholar 

  5. Owen WF Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med. 1993;329(14):1001–6.

    Article  PubMed  Google Scholar 

  6. Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4(5):1205–13.

    Article  CAS  PubMed  Google Scholar 

  7. Mellits ED, Cheek DB. The assessment of body water and fatness from infancy to adulthood. Monogr Soc Res Child Dev. 1970;35(7):12–26.

    Article  CAS  PubMed  Google Scholar 

  8. Morgenstern BZ, Wuhl E, Nair KS, Warady BA, Schaefer F. Anthropometric prediction of total body water in children who are on pediatric peritoneal dialysis. J Am Soc Nephrol. 2006;17(1):285–93.

    Article  PubMed  Google Scholar 

  9. Goldstein SL, Sorof JM, Brewer ED. Natural logarithmic estimates of Kt/V in the pediatric hemodialysis population. Am J Kidney Dis. 1999;33(3):518–22.

    Article  CAS  PubMed  Google Scholar 

  10. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: Hemodialysis adequacy, peritoneal Dialysis adequacy, and vascular access. Am J Kidney Dis. 2006;48:S1–S322.

    Google Scholar 

  11. Fadrowski JJ, Frankenfield D, Amaral S, Brady T, Gorman GH, Warady B, et al. Children on long-term dialysis in the United States: findings from the 2005 ESRD clinical performance measures project. Am J Kidney Dis. 2007;50(6):958–66.

    Article  CAS  PubMed  Google Scholar 

  12. Frankenfield DL, Neu AM, Warady BA, Watkins SL, Friedman AL, Fivush BA. Adolescent hemodialysis: results of the 2000 ESRD clinical performance measures project. Pediatr Nephrol. 2002;17(1):10–5.

    Article  PubMed  Google Scholar 

  13. Evans JH, Smye SW, Brocklebank JT. Mathematical modelling of haemodialysis in children. Pediatr Nephrol. 1992;6(4):349–53.

    Article  CAS  PubMed  Google Scholar 

  14. Marsenić O, Peco-Antić A, Jovanović O. Comparison of two methods for predicting equilibrated Kt/V (eKt/V) using true eKt/V value. Pediatric nephrology (Berlin, Germany). 1999;13(5):418–22.

    Article  Google Scholar 

  15. Goldstein SL, Sorof JM, Brewer ED. Evaluation and prediction of urea rebound and equilibrated Kt/V in the pediatric hemodialysis population. Am J Kidney Dis. 1999;34(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein SL, Brewer ED. Logarithmic extrapolation of a 15-minute postdialysis BUN to predict equilibrated BUN and calculate double-pool Kt/V in the pediatric hemodialysis population. Am J Kidney Dis. 2000;36(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  17. Daugirdas JT, Schneditz D. Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J. 1995;41(3):M719–24.

    Article  CAS  PubMed  Google Scholar 

  18. Tattersall JE, DeTakats D, Chamney P, Greenwood RN, Farrington K. The post-hemodialysis rebound: predicting and quantifying its effect on Kt/V. Kidney Int. 1996;50(6):2094–102.

    Article  CAS  PubMed  Google Scholar 

  19. Maduell F, Garcia-Valdecasas J, Garcia H, Hernandez-Jaras J, Siguenza F, del Pozo C, et al. Validation of different methods to calculate Kt/V considering postdialysis rebound. Nephrol Dial Transplant. 1997;12(9):1928–33.

    Article  CAS  PubMed  Google Scholar 

  20. Daugirdas JT, Depner TA, Gotch FA, Greene T, Keshaviah P, Levin NW, et al. Comparison of methods to predict equilibrated Kt/V in the HEMO pilot study. Kidney Int. 1997;52(5):1395–405.

    Article  CAS  PubMed  Google Scholar 

  21. Ashby D, Borman N, Burton J, Corbett R, Davenport A, Farrington K, et al. Renal association clinical practice guideline on Haemodialysis. BMC Nephrol. 2019;20(1):379.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Section II. Haemodialysis adequacy. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2002;17 Suppl 7:16–31.

    Google Scholar 

  23. Goldstein SL, Brem A, Warady BA, Fivush B, Frankenfield D. Comparison of single-pool and equilibrated Kt/V values for pediatric hemodialysis prescription management: analysis from the centers for Medicare & Medicaid Services Clinical Performance Measures Project. Pediatric nephrology (Berlin, Germany). 2006;21(8):1161–6.

    Article  Google Scholar 

  24. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 1998;13(Suppl 6):10–4.

    Article  CAS  Google Scholar 

  25. Leypoldt JK, Jaber BL, Zimmerman DL. Predicting treatment dose for novel therapies using urea standard Kt/V. Semin Dial. 2004;17(2):142–5.

    Article  PubMed  Google Scholar 

  26. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am J Kidney Dis 2015;66(5):884–930.

    Google Scholar 

  27. Mammen C, Goldstein SL, Milner R, White CT. Standard Kt/V thresholds to accurately predict single-pool Kt/V targets for children receiving thrice-weekly maintenance haemodialysis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2010;25(9):3044–50.

    Article  Google Scholar 

  28. Daugirdas JT, Hanna MG, Becker-Cohen R, Langman CB. Dose of dialysis based on body surface area is markedly less in younger children than in older adolescents. Clinical journal of the American Society of Nephrology: CJASN. 2010;5(5):821–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldstein SL. Hemodialysis in the pediatric patient: state of the art. Adv Ren Replace Ther. 2001;8(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  30. Borah MF, Schoenfeld PY, Gotch FA, Sargent JA, Wolfsen M, Humphreys MH. Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int. 1978;14(5):491–500.

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein SL, Baronette S, Gambrell TV, Currier H, Brewer ED. nPCR assessment and IDPN treatment of malnutrition in pediatric hemodialysis patients. Pediatric nephrology (Berlin, Germany). 2002;17(7):531–4.

    Article  Google Scholar 

  32. Orellana P, Juarez-Congelosi M, Goldstein SL. Intradialytic parenteral nutrition treatment and biochemical marker assessment for malnutrition in adolescent maintenance hemodialysis patients. J Ren Nutr. 2005;15(3):312–7.

    Article  PubMed  Google Scholar 

  33. Juarez-Congelosi M, Orellana P, Goldstein SL. Normalized protein catabolic rate versus serum albumin as a nutrition status marker in pediatric patients receiving hemodialysis. J Ren Nutr. 2007;17(4):269–74.

    Article  PubMed  Google Scholar 

  34. Srivaths PR, Sutherland S, Alexander S, Goldstein SL. Two-point normalized protein catabolic rate overestimates nPCR in pediatric hemodialysis patients. Pediatric nephrology (Berlin, Germany). 2013;28(5):797–801.

    Article  Google Scholar 

  35. Daugirdas JT, Depner TA, Greene T, Levin NW, Chertow GM, Rocco MV. Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int. 2010;77(7):637–44.

    Article  PubMed  Google Scholar 

  36. Maroni BJ, Steinman TI, Mitch WE. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985;27(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  37. Gorman G, Furth S, Hwang W, Parekh R, Astor B, Fivush B, et al. Clinical outcomes and dialysis adequacy in adolescent hemodialysis patients. Am J Kidney Dis. 2006;47(2):285–93.

    Article  PubMed  Google Scholar 

  38. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347(25):2010–9.

    Article  PubMed  Google Scholar 

  39. Tom A, McCauley L, Bell L, Rodd C, Espinosa P, Yu G, et al. Growth during maintenance hemodialysis: impact of enhanced nutrition and clearance. J Pediatr. 1999;134(4):464–71.

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein SL, Leung JC, Silverstein DM. Pro- and anti-inflammatory cytokines in chronic pediatric Dialysis patients: effect of aspirin. Clin J Am Soc Nephrol. 2006;1(5):979–86.

    Article  CAS  PubMed  Google Scholar 

  41. Goldstein SL, Currier H, Watters L, Hempe JM, Sheth RD, Silverstein D. Acute and chronic inflammation in pediatric patients receiving hemodialysis. J Pediatr. 2003;143(5):653–7.

    Article  CAS  PubMed  Google Scholar 

  42. Fischbach M, Terzic J, Menouer S, Dheu C, Soskin S, Helmstetter A, et al. Intensified and daily hemodialysis in children might improve statural growth. Pediatr Nephrol. 2006;21(11):1746–52.

    Article  PubMed  Google Scholar 

  43. Goldstein SL, Silverstein DM, Leung JC, Feig DI, Soletsky B, Knight C, et al. Frequent hemodialysis with NxStage system in pediatric patients receiving maintenance hemodialysis. Pediatr Nephrol. 2008;23(1):129–35.

    Article  PubMed  Google Scholar 

  44. Shroff R, Smith C, Ranchin B, Bayazit AK, Stefanidis CJ, Askiti V, et al. Effects of Hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, heart and height study. J Am Soc Nephrol. 2019;30(4):678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 1995;10(12):2295–305.

    Article  CAS  Google Scholar 

  46. Churchill DN, Taylor DW, Keshaviah PK, Thorpe KE, Beecroft ML. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

    Google Scholar 

  47. II. NKF-K/DOQI clinical practice guidelines for peritoneal Dialysis adequacy: update 2000. Am J Kidney Dis 2001;37(1 Suppl 1):S65-s136.

    Google Scholar 

  48. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158–62.

    Article  PubMed  Google Scholar 

  49. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002;13(5):1307–20.

    Article  CAS  PubMed  Google Scholar 

  50. Lo WK, Ho YW, Li CS, Wong KS, Chan TM, Yu AW, et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int. 2003;64(2):649–56.

    Article  PubMed  Google Scholar 

  51. Churchill DN. Impact of peritoneal dialysis dose guidelines on clinical outcomes. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2005;25(Suppl 3):S95–8.

    Article  Google Scholar 

  52. Rees L. Assessment of dialysis adequacy: beyond urea kinetic measurements. Pediatric nephrology (Berlin, Germany). 2019;34(1):61–9.

    Article  Google Scholar 

  53. Clinical practice guidelines for peritoneal adequacy, update 2006. Am J Kidney Dis. 2006;48 Suppl 1:S91–S97.

    Google Scholar 

  54. Warady BA, Schaefer F, Bagga A, Cano F, McCulloch M, Yap HK, et al. Prescribing peritoneal dialysis for high-quality care in children. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2020;40(3):333–40.

    Article  Google Scholar 

  55. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. National Kidney Foundation. Am J Kidney Dis 1997;30(3 Suppl 2):S67–136.

    Google Scholar 

  56. Fischbach M, Stefanidis CJ, Watson AR. Guidelines by an ad hoc European committee on adequacy of the paediatric peritoneal dialysis prescription. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2002;17(3):380–5.

    Article  Google Scholar 

  57. Schaefer F, Haraldsson B, Haas S, Simkova E, Feber J, Mehls O. Estimation of peritoneal mass transport by three-pore model in children. Kidney Int. 1998;54(4):1372–9.

    Article  CAS  PubMed  Google Scholar 

  58. Warady BA, Watkins SL, Fivush BA, Andreoli SP, Salusky I, Kohaut EC, et al. Validation of PD Adequest 2.0 for pediatric dialysis patients. Pediatric nephrology (Berlin, Germany). 2001, 16(3):205–11.

    Google Scholar 

  59. Schaefer F, Klaus G, Mehls O. Peritoneal transport properties and dialysis dose affect growth and nutritional status in children on chronic peritoneal dialysis. Mid-European pediatric peritoneal Dialysis study group. J Am Soc Nephrol. 1999;10(8):1786–92.

    Article  CAS  PubMed  Google Scholar 

  60. Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemother Rep. 1970;54(4):225–35.

    CAS  PubMed  Google Scholar 

  61. Cano F, Azocar M, Cavada G, Delucchi A, Marin V, Rodriguez E. Kt/V and nPNA in pediatric peritoneal dialysis: a clinical or a mathematical association? Pediatr Nephrol. 2006;21(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  62. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  63. Paniagua R, Ventura Mde J, Rodríguez E, Sil J, Galindo T, Hurtado ME, et al. Impact of fill volume on peritoneal clearances and cytokine appearance in peritoneal dialysis. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2004;24(2):156–62.

    Article  CAS  Google Scholar 

  64. Montini G, Amici G, Milan S, Mussap M, Naturale M, Rätsch IM, et al. Middle molecule and small protein removal in children on peritoneal dialysis. Kidney Int. 2002;61(3):1153–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64(6):2238–43.

    Article  CAS  PubMed  Google Scholar 

  66. Bouts AH, Davin JC, Groothoff JW, Van Amstel SP, Zweers MM, Krediet RT. Standard peritoneal permeability analysis in children. J Am Soc Nephrol. 2000;11(5):943–50.

    Article  PubMed  Google Scholar 

  67. Opatrná S, Opatrný K Jr, Racek J, Sefrna F. Effect of icodextrin-based dialysis solution on peritoneal leptin clearance. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2003;23(1):89–91.

    Article  Google Scholar 

  68. Schmitt CP, Borzych D, Nau B, Wühl E, Zurowska A, Schaefer F. Dialytic phosphate removal: a modifiable measure of dialysis efficacy in automated peritoneal dialysis. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2009;29(4):465–71.

    Article  CAS  Google Scholar 

  69. Mitsnefes M, Stablein D. Hypertension in pediatric patients on long-term dialysis: a report of the north American pediatric renal transplant cooperative study (NAPRTCS). Am J Kidney Dis. 2005;45(2):309–15.

    Article  PubMed  Google Scholar 

  70. Kramer AM, van Stralen KJ, Jager KJ, Schaefer F, Verrina E, Seeman T, et al. Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int. 2011;80(10):1092–8.

    Article  PubMed  Google Scholar 

  71. Bakkaloglu SA, Borzych D, Soo Ha I, Serdaroglu E, Büscher R, Salas P, et al. Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the international pediatric peritoneal Dialysis network (IPPN) registry. Clinical journal of the American Society of Nephrology: CJASN. 2011;6(8):1926–33.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eng CSY, Bhowruth D, Mayes M, Stronach L, Blaauw M, Barber A, et al. Assessing the hydration status of children with chronic kidney disease and on dialysis: a comparison of techniques. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2018;33(5):847–55.

    Article  CAS  Google Scholar 

  73. La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell'Oro C, Andrulli S, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68(2):840–6.

    Article  PubMed  Google Scholar 

  74. Rousso S, Banh TM, Ackerman S, Piva E, Licht C, Harvey EA. Impact of fill volume on ultrafiltration with icodextrin in children on chronic peritoneal dialysis. Pediatric nephrology (Berlin, Germany). 2016;31(10):1673–9.

    Article  Google Scholar 

  75. Dart A, Feber J, Wong H, Filler G. Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol. 2005;20(5):683–5.

    Article  PubMed  Google Scholar 

  76. Fischbach M, Zaloszyc A, Schaefer B, Schmitt CP. Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume. Pediatric nephrology (Berlin, Germany). 2014;29(8):1321–7.

    Article  Google Scholar 

  77. Chadha V, Blowey DL, Warady BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 2001;21(Suppl 3):S179–84.

    Article  Google Scholar 

  78. Rees L, Azocar M, Borzych D, Watson AR, Büscher A, Edefonti A, et al. Growth in very young children undergoing chronic peritoneal dialysis. J Am Soc Nephrol. 2011;22(12):2303–12.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schaefer F, Wolf S, Klaus G, Langenbeck D, Mehls O. Higher KT/V urea associated with greater protein catabolic rate and dietary protein intake in children treated with CCPD compared to CAPD. Mid-European pediatric CPD study group (MPCS). Advances in peritoneal dialysis Conference on Peritoneal Dialysis. 1994;10:310–4.

    CAS  PubMed  Google Scholar 

  80. Aranda RA, Pecoits-Filho RF, Romão JE Jr, Kakehashi E, Sabbaga E, Marcondes M, et al. Kt/V in children on CAPD: how much is enough? Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis. 1999;19(6):588–90.

    Article  CAS  Google Scholar 

  81. Fischbach M, Terzic J, Lahlou A, Burger MC, Eyer D, Desprez P, et al. Nutritional effects of KT/V in children on peritoneal dialysis: are there benefits from larger dialysis doses? Advances in peritoneal dialysis Conference on Peritoneal Dialysis. 1995;11:306–8.

    CAS  PubMed  Google Scholar 

  82. Brem AS, Lambert C, Hill C, Kitsen J, Shemin DG. Outcome data on pediatric dialysis patients from the end-stage renal disease clinical indicators project. Am J Kidney Dis. 2000;36(2):310–7.

    Article  CAS  PubMed  Google Scholar 

  83. Bakkaloglu SA, Saygili A, Sever L, Noyan A, Akman S, Ekim M, et al. Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish pediatric peritoneal Dialysis study group (TUPEPD) report. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2009;24(11):3525–32.

    Article  Google Scholar 

  84. Feber J, Schärer K, Schaefer F, Míková M, Janda J. Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatric nephrology (Berlin, Germany). 1994;8(5):579–83.

    Article  CAS  Google Scholar 

  85. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Advances in peritoneal dialysis Conference on Peritoneal Dialysis. 2001;17:269–73.

    CAS  PubMed  Google Scholar 

  86. Ha IS, Yap HK, Munarriz RL, Zambrano PH, Flynn JT, Bilge I, et al. Risk factors for loss of residual renal function in children treated with chronic peritoneal dialysis. Kidney Int. 2015;88(3):605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haag-Weber M, Krämer R, Haake R, Islam MS, Prischl F, Haug U, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2010;25(7):2288–96.

    Article  CAS  Google Scholar 

  88. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol. 2012;23(6):1097–107.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lui SL, Yung S, Yim A, Wong KM, Tong KL, Wong KS, et al. A combination of biocompatible peritoneal dialysis solutions and residual renal function, peritoneal transport, and inflammation markers: a randomized clinical trial. Am J Kidney Dis. 2012;60(6):966–75.

    Article  CAS  PubMed  Google Scholar 

  90. Cho Y, Johnson DW, Badve SV, Craig JC, Strippoli GF, Wiggins KJ. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int. 2013;84(5):969–79.

    Article  CAS  PubMed  Google Scholar 

  91. Li PK, Chow KM, Wong TY, Leung CB, Szeto CC. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med. 2003;139(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis. 2004;43(6):1056–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Eugenio Verrina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Verrina, E.E., Mammen, C. (2022). Adequacy of Dialysis. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics