Skip to main content

The Kidney in Mitochondrial Diseases

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Mitochondria are small dynamic intracellular organelles with critical roles in energy generation and other aspects of cellular homeostasis. Mitochondrial disorders, which are estimated to have a population prevalence of at least 1 in 4300, are monogenic diseases associated with dysfunction of the oxidative phosphorylation system, mitochondrial ultrastructure and dynamics, production of cofactors and vitamins, or other metabolic processes within the mitochondrion. Renal manifestations are a relatively frequent complication of mitochondrial disease and include Fanconi-type tubulopathy, chronic tubulointerstitial nephritis, steroid-resistant nephrotic syndrome, and cystic glomerular disease. Isolated kidney disease is a rare presentation of mitochondrial disease, although it does occur, particularly in some types of coenzyme Q10 (CoQ10) deficiency. More frequently, renal involvement is part of a complex multisystemic disease. The genetics of mitochondrial disease is complex and includes mutations of the intrinsic mitochondrial DNA (mtDNA) as well as more than 300 nuclear-encoded Mendelian disorders affecting mitochondrial function. The most frequent causes of mitochondrial nephropathy are point mutations and large-scale rearrangements of the mtDNA and autosomal recessive disorders of CoQ10 biosynthesis. Increasingly, exome and genome sequencing of large cohorts is leading to the identification of novel genetic causes of mitochondrial kidney disease, including disorders of mtDNA maintenance, mitochondrial translation, mitochondrial dynamics, and biosynthesis of membrane lipids and iron-sulfur clusters. Diagnosis is challenging, as there may be few clues from renal or muscle biopsy and biochemical testing, and the approach to diagnosis increasingly involves genome-wide next generation sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12(5):267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391(10139):2560–74.

    Article  CAS  PubMed  Google Scholar 

  3. DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. Nat Rev Neurol. 2013;9(8):429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol. 2012;748:65–106.

    Article  CAS  PubMed  Google Scholar 

  5. O’Toole JF. Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renov Dis. 2014;7:57–67.

    Article  Google Scholar 

  6. Connor TM, Hoer S, Mallett A, Gale DP, Gomez-Duran A, Posse V, et al. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet. 2017;13(3):e1006620.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Emma F, Salviati L. Mitochondrial cytopathies and the kidney. Nephrol Ther. 2017;13(Suppl 1):S23–8.

    Article  PubMed  Google Scholar 

  8. Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview. Pediatr Nephrol. 2021;36(1):9–17.

    Google Scholar 

  9. Ozaltin F. Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies. Pediatr Nephrol. 2014;29(6):961–9.

    Article  PubMed  Google Scholar 

  10. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shoffner JM, Voljavec AS, Dixon J, Kaufman A, Wallace DC, Mitch WE. Renal amino acid transport in adults with oxidative phosphorylation diseases. Kidney Int. 1995;47(4):1101–7.

    Article  CAS  PubMed  Google Scholar 

  12. Brinkkoetter PT, Bork T, Salou S, Liang W, Mizi A, Özel C, et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 2019;27(5):1551.e5–66.e5.

    Article  Google Scholar 

  13. Guéry B, Choukroun G, Noël LH, Clavel P, Rötig A, Lebon S, et al. The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am Soc Nephrol. 2003;14(8):2099–108.

    Article  PubMed  Google Scholar 

  14. Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, Edery P, et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet. 2000;356(9227):391–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26(6):1279–89.

    Article  CAS  PubMed  Google Scholar 

  16. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet. 2006;78(2):345–9.

    Article  CAS  PubMed  Google Scholar 

  17. Eroglu FK, Ozaltin F, Gonc N, Nalcacioglu H, Ozcakar ZB, Yalnizoglu D, et al. Response to Early Coenzyme Q10 Supplementation Is not Sustained in CoQ10 Deficiency Caused by CoQ2 Mutation. Pediatr Neurol. 2018;88:71–4.

    Article  PubMed  Google Scholar 

  18. Starr MC, Chang IJ, Finn LS, Sun A, Larson AA, Goebel J, et al. COQ2 nephropathy: a treatable cause of nephrotic syndrome in children. Pediatr Nephrol. 2018;33(7):1257–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gigante M, Diella S, Santangelo L, Trevisson E, Acosta MJ, Amatruda M, et al. Further phenotypic heterogeneity of CoQ10 deficiency associated with steroid resistant nephrotic syndrome and novel COQ2 and COQ6 variants. Clin Genet. 2017;92(2):224–6.

    Article  CAS  PubMed  Google Scholar 

  20. Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358(26):2849–50.

    Article  CAS  PubMed  Google Scholar 

  21. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121(5):2013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuruk Yildirim Z, Toksoy G, Uyguner O, Nayir A, Yavuz S, Altunoglu U, et al. Primary coenzyme Q10 Deficiency-6 (COQ10D6): Two siblings with variable expressivity of the renal phenotype. Eur J Med Genet. 2020;63(1):103621.

    Article  PubMed  Google Scholar 

  23. Rahman S, Clarke CF. Hirano M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q(1)(0) deficiency. Neuromuscul Disord. 2012;22(1):76–86.

    Article  PubMed  Google Scholar 

  24. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79(6):1125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ivanyi B, Racz GZ, Gal P, Brinyiczki K, Bodi I, Kalmar T, et al. Diffuse mesangial sclerosis in a PDSS2 mutation-induced coenzyme Q10 deficiency. Pediatr Nephrol. 2018;33(3):439–46.

    Article  PubMed  Google Scholar 

  26. Vasta V, Merritt JL 2nd, Saneto RP, Hahn SH. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int. 2012;54(5):585–601.

    Article  CAS  PubMed  Google Scholar 

  27. Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123(12):5179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Korkmaz E, Lipska-Zietkiewicz BS, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, et al. ADCK4-associated glomerulopathy causes Adolescence-Onset FSGS. J Am Soc Nephrol. 2016;27(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  29. Atmaca M, Gulhan B, Korkmaz E, Inozu M, Soylemezoglu O, Candan C, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol. 2017;32(8):1369–75.

    Article  PubMed  Google Scholar 

  30. Atmaca M, Gulhan B, Atayar E, Bayazit AK, Candan C, Arici M, et al. Long-term follow-up results of patients with ADCK4 mutations who have been diagnosed in the asymptomatic period: effects of early initiation of CoQ10 supplementation. Turk J Pediatr. 2019;61(5):657–63.

    Article  PubMed  Google Scholar 

  31. Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, López LC, Hirano M, Quinzii CM, Sadowski MI, Hardy J, Singleton A, Clayton PT, Rahman S. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet. 2009;84(5):558–66. https://doi.org/10.1016/j.ajhg.2009.03.018. Epub 2009 Apr 16. PMID: 19375058; PMCID: PMC2681001.

  32. Rahman S. Mitochondrial disease in children. J Intern Med. 2020;287(6):609–33.

    Article  CAS  PubMed  Google Scholar 

  33. Tucker EJ, Wanschers BF, Szklarczyk R, Mountford HS, Wijeyeratne XW, van den Brand MA, et al. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genet. 2013;9(12):e1004034.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miyake N, Yano S, Sakai C, Hatakeyama H, Matsushima Y, Shiina M, et al. Mitochondrial complex III deficiency caused by a homozygous UQCRC2 mutation presenting with neonatal-onset recurrent metabolic decompensation. Hum Mutat. 2013;34(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  35. Jonckheere AI, Renkema GH, Bras M, van den Heuvel LP, Hoischen A, Gilissen C, et al. A complex V ATP5A1 defect causes fatal neonatal mitochondrial encephalopathy. Brain. 2013;136(Pt 5):1544–54.

    Article  PubMed  Google Scholar 

  36. de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW, et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet. 2001;29(1):57–60.

    Article  PubMed  Google Scholar 

  37. De Meirleir L, Seneca S, Lissens W, De Clercq I, Eyskens F, Gerlo E, et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J Med Genet. 2004;41(2):120–4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Magner M, Dvorakova V, Tesarova M, Mazurova S, Hansikova H, Zahorec M, et al. TMEM70 deficiency: long-term outcome of 48 patients. J Inherit Metab Dis. 2015;38(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  39. Cohen BH, Chinnery PF, Copeland WC. POLG-Related Disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews(®). Seattle (WA): University of Washington, Seattle. Copyright © 1993-2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.

    Google Scholar 

  40. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006;38(5):570–5.

    Article  CAS  PubMed  Google Scholar 

  41. Dimmock DP, Zhang Q, Dionisi-Vici C, Carrozzo R, Shieh J, Tang LY, et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum Mutat. 2008;29(2):330–1.

    Article  CAS  PubMed  Google Scholar 

  42. Keshavan N, Abdenur J, Anderson G, Assouline Z, Barcia G, Bouhikbar L, et al. The natural history of infantile mitochondrial DNA depletion syndrome due to RRM2B deficiency. Genet Med. 2020;22(1):199–209.

    Article  CAS  PubMed  Google Scholar 

  43. Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet. 2011;88(2):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ng YS, Alston CL, Diodato D, Morris AA, Ulrick N, Kmoch S, et al. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease. J Med Genet. 2016;53(11):768–75.

    Article  CAS  PubMed  Google Scholar 

  45. Maas RR, Iwanicka-Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al-Owain MA, et al. Progressive deafness-dystonia due to SERAC1 mutations: A study of 67 cases. Ann Neurol. 2017;82(6):1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farhan SM, Wang J, Robinson JF, Lahiry P, Siu VM, Prasad C, et al. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency. Mol Genet Genomic Med. 2014;2(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  47. Saisawat P, Kohl S, Hilger AC, Hwang DY, Yung Gee H, Dworschak GC, et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 2014;85(6):1310–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kanabus M, Shahni R, Saldanha JW, Murphy E, Plagnol V, Hoff WV, et al. Bi-allelic CLPB mutations cause cataract, renal cysts, nephrocalcinosis and 3-methylglutaconic aciduria, a novel disorder of mitochondrial protein disaggregation. J Inherit Metab Dis. 2015;38(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  49. Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, et al. CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet. 2015;96(2):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feichtinger RG, Oláhová M, Kishita Y, Garone C, Kremer LS, Yagi M, et al. Biallelic C1QBP mutations cause severe neonatal-, childhood-, or later-onset cardiomyopathy associated with combined respiratory-chain deficiencies. Am J Hum Genet. 2017;101(4):525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27(4):539–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ozaltin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ozaltin, F., Salviati, L., Rahman, S. (2022). The Kidney in Mitochondrial Diseases. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_105

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_105

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics