Skip to main content

Physiology of Progesterone

  • Chapter
  • First Online:
Progestogens in Obstetrics and Gynecology

Abstract

The major target organ of progesterone is the reproductive system. Progesterone, in association with estrogen, is involved in the development and sexual maturation of the reproductive organs and orchestrates the menstrual cycle. Progesterone takes part in all the processes from the preparation of the uterine decidua, myometrium and cervix during the menstrual cycle through blastocyst implantation and is the key hormone in pregnancy maintenance, sustaining of myometrial quiescence, cervical competence and modulation of the maternal immune system during pregnancy. Accumulating evidence suggests that, in humans, progesterone withdrawal during parturition is probably functional and involves a shift in the balance between progesterone and cortisol, as well as changes in the genomic and non-genomic effects of progesterone at the cellular level. This chapter describes the specific effects of progesterone on the uterus and the cervix during the normal menstrual cycle, in the maintenance of normal pregnancy, and during parturition. Progesterone also has numerous systemic effects and influences other organs outside the female reproductive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szekeres-Bartho J, Schindler AE. Progestogens and immunology. Best Pract Res Clin Obstet Gynaecol. 2019;60:17–23.

    Article  CAS  PubMed  Google Scholar 

  2. Jure I, De Nicola AF, Labombarda F. Progesterone effects on the oligodendrocyte linage: all roads lead to the progesterone receptor. Neural Regen Res. 2019;14:2029–34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. DeMayo FJ, et al. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci. 2002;955:48–59.

    Article  CAS  PubMed  Google Scholar 

  4. Catt KJ IV. Reproductive endocrinology. Lancet. 1970;1(7656):1097–104.

    Article  CAS  PubMed  Google Scholar 

  5. An BS, et al. Differential role of progesterone receptor isoforms in the transcriptional regulation of human gonadotropin-releasing hormone I (GnRH I) receptor, GnRH I, and GnRH II. J Clin Endocrinol Metab. 2005;90:1106–13.

    Article  CAS  PubMed  Google Scholar 

  6. Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature. 1998;393(6683):392–6.

    Article  CAS  PubMed  Google Scholar 

  7. Losel R, Wehling M. Nongenomic actions of steroid hormones. Nat Rev MolCell Biol. 2003;4:46–56.

    Article  CAS  Google Scholar 

  8. Garg D, et al. Progesterone-mediated non-classical signaling. Trends Endocrinol Metab. 2017;28:656–68.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–86.

    Article  CAS  PubMed  Google Scholar 

  10. Power RF, Conneely OM, O’Malley BW. New insights into activation of the steroid hormone receptor superfamily. Trends Pharmacol Sci. 1992;13:318–23.

    Article  CAS  PubMed  Google Scholar 

  11. DeMarzo AM, et al. Dimerization of mammalian progesterone receptors occurs in the absence of DNA and is related to the release of the 90-kDa heat shock protein. Proc. Natl. Acad.Sci.U.S.A. 1991;88(1):72–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brosens JJ, et al. Steroid receptor action. Best Pract Res Clin Obstet Gynaecol. 2004;18:265–83.

    Article  PubMed  Google Scholar 

  13. Kastner P, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms a and B. EMBO J. 1990;9:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel B, et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21:155–73.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer ME, et al. A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J Biol Chem. 1992;267:10882–7.

    CAS  PubMed  Google Scholar 

  16. Vegeto E, et al. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol. 1993;7:1244–55.

    CAS  PubMed  Google Scholar 

  17. Hirata S, et al. Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends Endocrinol Metab. 2003;14:124–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sartorius CA, et al. A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol. 1994;8:1347–60.

    CAS  PubMed  Google Scholar 

  19. Huse B, et al. Definition of a negative modulation domain in the human progesterone receptor. Mol Endocrinol. 1998;12:1334–42.

    Article  CAS  PubMed  Google Scholar 

  20. Wildman DE, et al. Evolutionary history of the progesterone receptor in primates. J Soc Gynecol Invest. 2006;13:238A.

    Google Scholar 

  21. Wei LL, et al. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocrinol. 1996;10:1379–87.

    CAS  PubMed  Google Scholar 

  22. Condon JC, et al. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol. 2006;20:764–75.

    Article  CAS  PubMed  Google Scholar 

  23. Wei LL, Norris BN, Baker CJ. An N-terminally truncated third progesterone receptor protein, PR(C), forms heterodimers with PR(B) but interferes in PR(B)-DNA binding. J Steroid Biochem Mol Biol. 1997;62:287–97.

    Article  CAS  PubMed  Google Scholar 

  24. Hirata S, et al. The novel isoform of the estrogen receptor-alpha cDNA (ERalpha isoform S cDNA) in the human testis. J Steroid Biochem Mol Biol. 2002;80:299–305.

    Article  CAS  PubMed  Google Scholar 

  25. Saner KJ, et al. Cloning and expression of a novel, truncated, progesterone receptor. Mol Cell Endocrinol. 2003;200:155–63.

    Article  CAS  PubMed  Google Scholar 

  26. Samalecos A, Gellersen B. Systematic expression analysis and antibody screening do not support the existence of naturally occurring progesterone receptor (PR)-C, PR-M, or other truncated PR isoforms. Endocrinology. 2008;149:5872–87.

    Article  CAS  PubMed  Google Scholar 

  27. Madsen G, et al. Progesterone receptor or cytoskeletal protein? Reprod Sci. 2007;14:217–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar R, et al. The clinical relevance of steroid hormone receptor corepressors. Clin Cancer Res. 2005;11:2822–31.

    Article  CAS  PubMed  Google Scholar 

  29. Lee K, et al. Molecular mechanisms involved in progesterone receptor regulation of uterine function. J Steroid Biochem Mol Biol. 2006;102:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spelsberg TC, Steggles AW, O’Malley BW. Progesterone-binding components of chick oviduct. 3. Chromatin acceptor sites. J Biol Chem. 1971;246:4188–97.

    CAS  PubMed  Google Scholar 

  31. Gao X, Loggie BW, Nawaz Z. The roles of sex steroid receptor coregulators in cancer. Mol Cancer. 2002;1:7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee A, et al. Steroid receptor coactivator 2 is essential for progesterone-dependent uterine function and mammary morphogenesis: insights from the mouse--implications for the human. J Steroid Biochem Mol Biol. 2006;102:22–31.

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez-Valdivia R, et al. Progesterone-action in the murine uterus and mammary gland requires steroid receptor coactivator 2: relevance to the human. Front Biosci. 2007;12:3640–7.

    Article  CAS  PubMed  Google Scholar 

  34. McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108:465–74.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 2004;25:45–71.

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998;279(5358):1922–5.

    Article  CAS  PubMed  Google Scholar 

  37. Han SJ, et al. Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol Endocrinol. 2006;20:45–55.

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad.Sci.U.S.A. 2000;97:6379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heery DM, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733–6.

    Article  CAS  PubMed  Google Scholar 

  40. Aoyagi S, Archer TK. Dynamic histone acetylation/deacetylation with progesterone receptor-mediated transcription. Mol Endocrinol. 2007;21:843–56.

    Article  CAS  PubMed  Google Scholar 

  41. Luconi M, et al. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J Clin Endocrinol Metab. 1998;83:877–85.

    CAS  PubMed  Google Scholar 

  42. Falkenstein E, et al. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+−fluxes in sperm. Endocrinology. 1999;140:5999–6002.

    Article  CAS  PubMed  Google Scholar 

  43. Patrat C, Serres C, Jouannet P. Induction of a sodium ion influx by progesterone in human spermatozoa. Biol Reprod. 2000;62:1380–6.

    Article  CAS  PubMed  Google Scholar 

  44. Turner KO, Meizel S. Progesterone-mediated efflux of cytosolic chloride during the human sperm acrosome reaction. Biochem Biophys Res Commun. 1995;213:774–80.

    Article  CAS  PubMed  Google Scholar 

  45. Finidori-Lepicard J, et al. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature. 1981;292(5820):255–7.

    Article  CAS  PubMed  Google Scholar 

  46. Grosse B, et al. Membrane signalling and progesterone in female and male osteoblasts. I. Involvement Of intracellular Ca(2+), inositol trisphosphate, and diacylglycerol, but not cAMP. J Cell Biochem. 2000;79:334–45.

    Article  CAS  PubMed  Google Scholar 

  47. Le Mellay V, Lieberherr M. Membrane signaling and progesterone in female and male osteoblasts. II. Direct involvement of G alpha q/11 coupled to PLC-beta 1 and PLC-beta 3. J. Cell Biochem. 2000;79:173–81.

    Article  PubMed  Google Scholar 

  48. Maller JL, Krebs EG. Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem. 1977;252:1712–8.

    CAS  PubMed  Google Scholar 

  49. Ishikawa K, et al. Primary action of steroid hormone at the surface of amphibian oocyte in the induction of germinal vesicle breakdown. Mol Cell Endocrinol. 1977;9:91–100.

    Article  CAS  PubMed  Google Scholar 

  50. Baulieu EE, et al. Steroid-induced meiotic division in Xenopus laevis oocytes: surface and calcium. Nature. 1978;275(5681):593–8.

    Article  CAS  PubMed  Google Scholar 

  51. Meizel S, Turner KO. Progesterone acts at the plasma membrane of human sperm. Mol Cell Endocrinol. 1991;77:R1–5.

    Article  CAS  PubMed  Google Scholar 

  52. Blackmore PF, Lattanzio FA. Cell surface localization of a novel non-genomic progesterone receptor on the head of human sperm. Biochem Biophys Res Commun. 1991;181:331–6.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer C, et al. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur J Biochem. 1996;239:726–31.

    Article  CAS  PubMed  Google Scholar 

  54. Falkenstein E, et al. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1996;229:86–9.

    Article  CAS  PubMed  Google Scholar 

  55. Krebs CJ, et al. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl. Acad.Sci.U.S.A. 2000;97:12816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad.Sci.U.S.A. 2003;100:2237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. White HD, et al. Mucosal immunity in the human female reproductive tract: cytotoxic T lymphocyte function in the cervix and vagina of premenopausal and postmenopausal women. Am J Reprod Immunol. 1997;37:30–8.

    Article  CAS  PubMed  Google Scholar 

  58. Wira CR, Rossoll RM. Antigen-presenting cells in the female reproductive tract: influence of sex hormones on antigen presentation in the vagina. Immunology. 1995;84:505–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Walch KT, Huber JC. Progesterone for recurrent miscarriage: truth and deceptions. Best Pract Res Clin Obstet Gynaecol. 2008;22:375–89.

    Article  PubMed  Google Scholar 

  60. Hanna J, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.

    Article  CAS  PubMed  Google Scholar 

  61. Croy BA, et al. Decidual natural killer cells: key regulators of placental development (a review). J Reprod Immunol. 2002;57:151–68.

    Article  CAS  PubMed  Google Scholar 

  62. Beagley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol. 2003;38:13–22.

    Article  CAS  PubMed  Google Scholar 

  63. Roche SL, et al. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective Fractalkine-CX3CR1 signaling. PLoS One. 2016;11:e0165197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Verma S, et al. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod. 2000;62:959–68.

    Article  CAS  PubMed  Google Scholar 

  65. Roussev RG, Higgins NG, McIntyre JA. Phenotypic characterization of normal human placental mononuclear cells. J ReprodImmunol. 1993;25:15–29.

    CAS  Google Scholar 

  66. Chao KH, et al. Decidual natural killer cytotoxicity decreased in normal pregnancy but not in anembryonic pregnancy and recurrent spontaneous abortion. Am J ReprodImmunol. 1995;34:274–80.

    CAS  Google Scholar 

  67. Piccinni MP, Maggi E, Romagnani S. Role of hormone-controlled T-cell cytokines in the maintenance of pregnancy. Biochem Soc Trans. 2000;28:212–5.

    Article  CAS  PubMed  Google Scholar 

  68. Szekeres-Bartho J, Wegmann TG. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol. 1996;31:81–95.

    Article  CAS  PubMed  Google Scholar 

  69. Saito S. Cytokine network at the feto-maternal interface. J Reprod Immunol. 2000;47:87–103.

    Article  CAS  PubMed  Google Scholar 

  70. Eblen AC, et al. Alterations in humoral immune responses associated with recurrent pregnancy loss. Fertil Steril. 2000;73:305–13.

    Article  CAS  PubMed  Google Scholar 

  71. Druckmann R, Druckmann MA. Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol. 2005;97:389–96.

    Article  CAS  PubMed  Google Scholar 

  72. Szekeres-Bartho J, et al. The mechanism of the inhibitory effect of progesterone on lymphocyte cytotoxicity: I Progesterone-treated lymphocytes release a substance inhibiting cytotoxicity and prostaglandin synthesis. Am J Reprod Immunol Microbiol. 1985;9:15–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kelemen K, et al. A progesterone-induced protein increases the synthesis of asymmetric antibodies. Cell Immunol. 1996;167:129–34.

    Article  CAS  PubMed  Google Scholar 

  74. Faust Z, et al. Progesterone-induced blocking factor inhibits degranulation of natural killer cells. Am J Reprod Immunol. 1999;42:71–5.

    CAS  PubMed  Google Scholar 

  75. Laskarin G, et al. Progesterone induced blocking factor (PIBF) mediates progesterone induced suppression of decidual lymphocyte cytotoxicity. Am J Reprod Immunol. 2002;48:201–9.

    Article  PubMed  Google Scholar 

  76. Jabbour HN, et al. Endocrine regulation of menstruation. Endocr Rev. 2006;27:17–46.

    Article  CAS  PubMed  Google Scholar 

  77. Gambino LS, et al. Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Hum Reprod. 2002;17:1199–206.

    Article  PubMed  Google Scholar 

  78. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122:262–3.

    Article  CAS  PubMed  Google Scholar 

  79. Lerner LJ. Hormone antagonists: inhibitors of specific activities of estrogen and androgen. Recent Prog Horm Res. 1964;20:435–90.

    CAS  PubMed  Google Scholar 

  80. Hsueh AJ, Peck EJ, Clark JH. Progesterone antagonism of the oestrogen receptor and oestrogen-induced uterine growth. Nature. 1975;254(5498):337–9.

    Article  CAS  PubMed  Google Scholar 

  81. Kirkland JL, Murthy L, Stancel GM. Progesterone inhibits the estrogen-induced expression of c-fos messenger ribonucleic acid in the uterus. Endocrinology. 1992;130:3223–30.

    Article  CAS  PubMed  Google Scholar 

  82. Lockwood CJ, et al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann N Y Acad Sci. 1994;734:57–79.

    Article  CAS  PubMed  Google Scholar 

  83. Lockwood CJ, Krikun G, Papp C, Aigner S, Nemerson Y, Schatz F. Biological mechanisms underlying RU 486 clinical effects: inhibition of endometrial stromal cell tissue factor content. J Clin Endocrinol Metab. 1994;79:786–90.

    CAS  PubMed  Google Scholar 

  84. Cibils LA. Contractility of the nonpregnant human uterus. Obstet Gynecol. 1967;30:441–61.

    CAS  PubMed  Google Scholar 

  85. de Ziegler D, Bulletti C, Fanchin R, Epiney M, Brioschi PA. Contractility of the nonpregnant uterus: the follicular phase. Ann. N.Y. Acad. Sci. 2001;943:172–84.

    Article  PubMed  Google Scholar 

  86. Noe M, et al. The cyclic pattern of the immunocytochemical expression of oestrogen and progesterone receptors in human myometrial and endometrial layers: characterization of the endometrial-subendometrial unit. Hum Reprod. 1999;14:190–7.

    Article  CAS  PubMed  Google Scholar 

  87. Akerlund M, Batra S, Helm G. Comparison of plasma and myometrial tissue concentrations of estradiol-17 beta and progesterone in nonpregnant women. Contraception. 1981;23:447–55.

    Article  CAS  PubMed  Google Scholar 

  88. Batra S, Sjoberg NO, Thorbert G. Sex steroids in plasma and reproductive tissues of the female Guinea pig. Biol Reprod. 1980;22:430–7.

    Article  CAS  PubMed  Google Scholar 

  89. Cano A, et al. Expression of estrogen receptors, progesterone receptors, and an estrogen receptor-associated protein in the human cervix during the menstrual cycle and menopause. Fertil Steril. 1990;54:1058–64.

    Article  CAS  PubMed  Google Scholar 

  90. Gorodeski GI. Effects of menopause and estrogen on cervical epithelial permeability. J.Clin.Endocrinol.Metab. 2000;85:2584–95.

    CAS  PubMed  Google Scholar 

  91. Odeblad E. Physical properties of cervical mucus. Adv Exp Med Biol. 1977;89:217–25.

    Article  CAS  PubMed  Google Scholar 

  92. Snijders MP, et al. Immunocytochemical analysis of oestrogen receptors and progesterone receptors in the human uterus throughout the menstrual cycle and after the menopause. J Reprod Fertil. 1992;94:363–71.

    Article  CAS  PubMed  Google Scholar 

  93. Odeblad E. The physics of the cervical mucus. Acta Obstet Gynecol Scand Suppl. 1959;38(Supp 1):44–58.

    Article  CAS  PubMed  Google Scholar 

  94. Odeblad E. Undulations of macromolecules in cervical mucus. Int J Fertil. 1962;7:313–9.

    CAS  PubMed  Google Scholar 

  95. Croxatto HB. Mechanisms that explain the contraceptive action of progestin implants for women. Contraception. 2002;65:21–7.

    Article  CAS  PubMed  Google Scholar 

  96. Erkkola R, Landgren BM. Role of progestins in contraception. Acta Obstet Gynecol Scand. 2005;84:207–16.

    Article  PubMed  Google Scholar 

  97. Mesiano S. Roles of estrogen and progesterone in human parturition. Front Horm Res. 2001;27:86–104.

    Article  CAS  PubMed  Google Scholar 

  98. Tulchinsky D, Hobel CJ. Plasma human chorionic gonadotropin, estrone, estradiol, estriol, progesterone, and 17 alpha-hydroxyprogesterone in human pregnancy. 3. Early normal pregnancy. Am J Obstet Gynecol. 1973;117:884–93.

    Article  CAS  PubMed  Google Scholar 

  99. Johansson ED. Plasma levels of progesterone in pregnancy measured by a rapid competitive protein binding technique. Acta Endocrinol. 1969;61:607–17.

    Article  CAS  Google Scholar 

  100. Tulchinsky D, Okada D. Hormones in human pregnancy. IV. Plasma progesterone. Am J Obstet Gynecol. 1975;121:293–9.

    Article  CAS  PubMed  Google Scholar 

  101. Ohana E, et al. Maternal plasma and amniotic fluid cortisol and progesterone concentrations between women with and without term labor. A comparison. J Reprod Med. 1996;41:80–6.

    CAS  PubMed  Google Scholar 

  102. Mazor M, et al. Maternal plasma and amniotic fluid 17 beta-estradiol, progesterone and cortisol concentrations in women with successfully and unsuccessfully treated preterm labor. Arch Gynecol Obstet. 1996;258:89–96.

    Article  CAS  PubMed  Google Scholar 

  103. Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod. 1994;9(Suppl 1):131–61.

    Article  CAS  PubMed  Google Scholar 

  104. Stjernholm Y, et al. Cervical ripening in humans: potential roles of estrogen, progesterone, and insulin-like growth factor-I. Am J Obstet Gynecol. 1996;174:1065–71.

    Article  CAS  PubMed  Google Scholar 

  105. Karim SM, Hillier K. Prostaglandins in the control of animal and human reproduction. Br Med Bull. 1979;35:173–80.

    Article  CAS  PubMed  Google Scholar 

  106. Zakar T, Hertelendy F. Progesterone withdrawal: key to parturition. Am J Obstet Gynecol. 2007;196:289–96.

    Article  CAS  PubMed  Google Scholar 

  107. Mendelson CR, Condon JC. New insights into the molecular endocrinology of parturition. J Steroid Biochem Mol Biol. 2005;93:113–9.

    Article  CAS  PubMed  Google Scholar 

  108. Mahendroo MS, et al. The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol Endocrinol. 1999;13:981–92.

    CAS  PubMed  Google Scholar 

  109. Bernal AL. Overview of current research in parturition. Exp Physiol. 2001;86:213–22.

    Article  CAS  PubMed  Google Scholar 

  110. Bygdeman M, et al. The use of progesterone antagonists in combination with prostaglandin for termination of pregnancy. Hum Reprod. 1994;9(Suppl 1):121–5.

    Article  PubMed  Google Scholar 

  111. Puri CP, et al. Effects of progesterone antagonist ZK 98.299 on early pregnancy and foetal outcome in bonnet monkeys. Contraception. 1990;41:197–205.

    Article  CAS  PubMed  Google Scholar 

  112. Westphal U, Stroupe SD, Cheng SL. Progesterone binding to serum proteins. Ann N Y Acad Sci. 1977;286:10–28.

    Article  CAS  PubMed  Google Scholar 

  113. Karalis K, Goodwin G, Majzoub JA. Cortisol blockade of progesterone: a possible molecular mechanism involved in the initiation of human labor. NatMed. 1996;2:556–60.

    CAS  Google Scholar 

  114. Milewich L, et al. Initiation of human parturition. VIII. Metabolism of progesterone by fetal membranes of early and late human gestation. Obstet Gynecol. 1977;50:45–8.

    CAS  PubMed  Google Scholar 

  115. Mitchell BF, Wong S. Changes in 17 beta,20 alpha-hydroxysteroid dehydrogenase activity supporting an increase in the estrogen/progesterone ratio of human fetal membranes at parturition. Am J Obstet Gynecol. 1993;168:1377–85.

    Article  CAS  PubMed  Google Scholar 

  116. Pieber D, et al. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7:875–9.

    Article  CAS  PubMed  Google Scholar 

  117. Tan H, et al. Progesterone receptor-a and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab. 2012;97:E719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Challis JRG, et al. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21:514–50.

    CAS  PubMed  Google Scholar 

  119. Rezapour M, et al. Sex steroid receptors and human parturition. Obstet Gynecol. 1997;89:918–24.

    Article  CAS  PubMed  Google Scholar 

  120. Fu X, et al. Unexpected stimulatory effect of progesterone on human myometrial contractile activity in vitro. Obstet Gynecol. 1993;82:23–8.

    CAS  PubMed  Google Scholar 

  121. Fu X, et al. Antitachyphylactic effects of progesterone and oxytocin on term human myometrial contractile activity in vitro. Obstet Gynecol. 1993;82(4 Pt 1):532–8.

    CAS  PubMed  Google Scholar 

  122. Pieber D, Allport VC, Bennett PR. Progesterone receptor isoform a inhibits isoform B-mediated transactivation in human amnion. Eur J Pharmacol. 2001;427:7–11.

    Article  CAS  PubMed  Google Scholar 

  123. Mesiano S, et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor a expression in the myometrium. J Clin Endocrinol Metab. 2002;87:2924–30.

    Article  CAS  PubMed  Google Scholar 

  124. Haukkamaa M. High affinity progesterone binding sites of human uterine microsomal membranes. J Steroid Biochem. 1984;20:569–73.

    Article  CAS  PubMed  Google Scholar 

  125. Karteris E, et al. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol. 2006;20:1519–34.

    Article  CAS  PubMed  Google Scholar 

  126. Fernandes MS, et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol. 2005;187:89–101.

    Article  CAS  PubMed  Google Scholar 

  127. Nissenson R, Fluoret G, Hechter O. Opposing effects of estradiol and progesterone on oxytocin receptors in rabbit uterus. Proc Natl Acad Sci U S A. 1978;75:2044–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soloff MS, et al. Regulation of oxytocin receptor concentration in rat uterine explants by estrogen and progesterone. Can J Biochem Cell Biol. 1983;61:625–30.

    Article  CAS  PubMed  Google Scholar 

  129. Larcher A, et al. Oxytocin receptor gene expression in the rat uterus during pregnancy and the estrous cycle and in response to gonadal steroid treatment. Endocrinology. 1995;136:5350–6.

    Article  CAS  PubMed  Google Scholar 

  130. Grazzini E, et al. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392(6675):509–12.

    Article  CAS  PubMed  Google Scholar 

  131. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81:629–83.

    Article  CAS  PubMed  Google Scholar 

  132. Gimpl G, et al. Oxytocin receptors and cholesterol: interaction and regulation. Exp Physiol. 2000;85:41S–9S.

    Article  CAS  PubMed  Google Scholar 

  133. Debry P, et al. Role of multidrug resistance P-glycoproteins in cholesterol esterification. J Biol Chem. 1997;272:1026–31.

    Article  CAS  PubMed  Google Scholar 

  134. Smart EJ, et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem. 1996;271:29427–35.

    Article  CAS  PubMed  Google Scholar 

  135. Metherall JE, Waugh K, Li H. Progesterone inhibits cholesterol biosynthesis in cultured cells. Accumulation of cholesterol precursors. J Biol Chem. 1996;271:2627–33.

    Article  CAS  PubMed  Google Scholar 

  136. Gimpl G, Fahrenholz F. Human oxytocin receptors in cholesterol-rich vs cholesterol-poor microdomains of the plasma membrane. Eur J Biochem. 2000;267:2483–97.

    Article  CAS  PubMed  Google Scholar 

  137. Klein U, Gimpl G, Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 1995;34:13784–93.

    Article  CAS  PubMed  Google Scholar 

  138. Kofinas AD, et al. Progesterone and estradiol concentrations in nonpregnant and pregnant human myometrium Effect of progesterone and estradiol on cyclic adenosine monophosphate-phosphodiesterase activity. J Reprod Med. 1990;35:1045–50.

    CAS  PubMed  Google Scholar 

  139. Fomin VP, Cox BE, Word RA. Effect of progesterone on intracellular Ca2+ homeostasis in human myometrial smooth muscle cells. Am J Phys. 1999;276(Pt 1):C379–85.

    Article  CAS  Google Scholar 

  140. Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction. 2005;130:569–81.

    Article  CAS  PubMed  Google Scholar 

  141. Lappas M, Rice GE. The role and regulation of the nuclear factor kappa B signalling pathway in human labour. Placenta. 2007;28:543–56.

    Article  CAS  PubMed  Google Scholar 

  142. Condon JC, et al. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci U S A. 2004;101:4978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lappas M, Permezel M, Rice GE. Advanced glycation endproducts mediate pro-inflammatory actions in human gestational tissues via nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Endocrinol. 2007;193:269–77.

    Article  CAS  PubMed  Google Scholar 

  144. Mohan AR, et al. The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-kappaB activity in human amnion cells. Endocrinology. 2007;148:1850–7.

    Article  CAS  PubMed  Google Scholar 

  145. Karalis K, et al. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science. 1991;254(5030):421–3.

    Article  CAS  PubMed  Google Scholar 

  146. Kalkhoven E, et al. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem. 1996;271:6217–24.

    Article  CAS  PubMed  Google Scholar 

  147. Allport VC, et al. Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol Hum Reprod. 2001;7:581–6.

    Article  CAS  PubMed  Google Scholar 

  148. Hardy DB, et al. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20:2724–33.

    Article  CAS  PubMed  Google Scholar 

  149. Srivastava MD, Anderson DJ. Progesterone receptor expression by human leukocyte cell lines: molecular mechanisms of cytokine suppression. Clin Exp Obstet Gynecol. 2007;34:14–24.

    CAS  PubMed  Google Scholar 

  150. Ito A, et al. Suppression of interleukin 8 production by progesterone in rabbit uterine cervix. Biochem J. 1994;301(Pt 1):183–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vidaeff AC, et al. Impact of progesterone on cytokine-stimulated nuclear factor-kappaB signaling in HeLa cells. J Matern Fetal Neonatal Med. 2007;20:23–8.

    Article  CAS  PubMed  Google Scholar 

  152. Condon JC, et al. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci U S A. 2003;100:9518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dong X, et al. Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor. J Biol Chem. 2005;280:13329–40.

    Article  CAS  PubMed  Google Scholar 

  154. Tyson-Capper AJ, Shiells EA, Robson SC. Interplay between polypyrimidine tract binding protein-associated splicing factor and human myometrial progesterone receptors. J Mol Endocrinol. 2009;43:29–41.

    Article  CAS  PubMed  Google Scholar 

  155. Xie N, et al. Expression and function of myometrial PSF suggest a role in progesterone withdrawal and the initiation of labor. Mol Endocrinol. 2012;26:1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goldman S, et al. Progesterone receptor expression in human decidua and fetal membranes before and after contractions: possible mechanism for functional progesterone withdrawal. Mol HumReprod. 2005;11:269–77.

    CAS  Google Scholar 

  157. Oh SY, et al. Progesterone receptor isoform (A/B) ratio of human fetal membranes increases during term parturition. Am JObstetGynecol. 2005;193(Pt 2):1156–60.

    CAS  Google Scholar 

  158. Mills AA, et al. Characterization of progesterone receptor isoform expression in fetal membranes. Am J Obstet Gynecol. 2006;195:998–1003.

    Article  CAS  PubMed  Google Scholar 

  159. Taylor AH, et al. The progesterone receptor in human term amniochorion and placenta is isoform C. Endocrinology. 2006;147:687–93.

    Article  CAS  PubMed  Google Scholar 

  160. Facchinetti F, et al. Cervical length changes during preterm cervical ripening: effects of 17-alpha-hydroxyprogesterone caproate. Am J Obstet Gynecol. 2007;196:453–4.

    Article  PubMed  CAS  Google Scholar 

  161. Marx SG, et al. Effects of progesterone on iNOS, COX-2, and collagen expression in the cervix. J Histochem Cytochem. 2006;54:623–39.

    Article  CAS  PubMed  Google Scholar 

  162. Giacalone PL, et al. The effects of mifepristone on uterine sensitivity to oxytocin and on fetal heart rate patterns. Eur J Obstet Gynecol Reprod Biol. 2001;97:30–4.

    Article  CAS  PubMed  Google Scholar 

  163. Chwalisz K, et al. Cervical ripening in Guinea-pigs after a local application of nitric oxide. Hum Reprod. 1997;12:2093–101.

    Article  CAS  PubMed  Google Scholar 

  164. Hegele-Hartung C, et al. Ripening of the uterine cervix of the guinea-pig after treatment with the progesterone antagonist onapristone (ZK 98.299): an electron microscopic study. Hum Reprod. 1989;4:369–77.

    Article  CAS  PubMed  Google Scholar 

  165. Wolf JP, et al. Progesterone antagonist (RU 486) for cervical dilation, labor induction, and delivery in monkeys: effectiveness in combination with oxytocin. Am J Obstet Gynecol. 1989;160:45–7.

    Article  CAS  PubMed  Google Scholar 

  166. Stys SJ, Clewell WH, Meschia G. Changes in cervical compliance at parturition independent of uterine activity. Am J Obstet Gynecol. 1978;130:414–8.

    Article  CAS  PubMed  Google Scholar 

  167. Carbonne B, et al. Effects of progesterone on prostaglandin E(2)-induced changes in glycosaminoglycan synthesis by human cervical fibroblasts in culture. Mol Hum Reprod. 2000;6:661–4.

    Article  CAS  PubMed  Google Scholar 

  168. Glassman W, Byam-Smith M, Garfield RE. Changes in rat cervical collagen during gestation and after antiprogesterone treatment as measured in vivo with light-induced autofluorescence. Am J Obstet Gynecol. 1995;173:1550–6.

    Article  CAS  PubMed  Google Scholar 

  169. Denison FC, Calder AA, Kelly RW. The action of prostaglandin E2 on the human cervix: stimulation of interleukin 8 and inhibition of secretory leukocyte protease inhibitor. Am J Obstet Gynecol. 1999;180(Pt 1):614–20.

    Article  CAS  PubMed  Google Scholar 

  170. Imada K, et al. An antiprogesterone, onapristone, enhances the gene expression of promatrix metalloproteinase 3/prostromelysin-1 in the uterine cervix of pregnant rabbit. Biol Pharm Bull. 2002;25:1223–7.

    Article  CAS  PubMed  Google Scholar 

  171. Osmers R, et al. Collagenase activity in the cervix of non-pregnant and pregnant women. Arch Gynecol Obstet. 1990;248:75–80.

    Article  CAS  PubMed  Google Scholar 

  172. Danforth DN, Buckingham JC, Roddick JW Jr. Connective tissue changes incident to cervical effacement. AmJObstetGynecol. 1960;80:939–45.

    CAS  Google Scholar 

  173. Winn RJ, Baker MD, Sherwood OD. Individual and combined effects of relaxin, estrogen, and progesterone in ovariectomized gilts. I. Effects on the growth, softening, and histological properties of the cervix. Endocrinology. 1994;135:1241–9.

    Article  CAS  PubMed  Google Scholar 

  174. Clark K, et al. Mifepristone-induced cervical ripening: structural, biomechanical, and molecular events. Am J Obstet Gynecol. 2006;194:1391–8.

    Article  CAS  PubMed  Google Scholar 

  175. Cabrol D, et al. Prostaglandin E2-induced changes in the distribution of glycosaminoglycans in the isolated rat uterine cervix. Eur J Obstet Gynecol Reprod Biol. 1987;26:359–65.

    Article  CAS  PubMed  Google Scholar 

  176. Danforth DN, et al. The effect of pregnancy and labor on the human cervix: changes in collagen, glycoproteins, and glycosaminoglycans. Am J Obstet Gynecol. 1974;120:641–51.

    Article  CAS  PubMed  Google Scholar 

  177. Osmers R, et al. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol. 1993;81:88–92.

    CAS  PubMed  Google Scholar 

  178. Imada K, et al. Hormonal regulation of matrix metalloproteinase 9/gelatinase B gene expression in rabbit uterine cervical fibroblasts. Biol Reprod. 1997;56:575–80.

    Article  CAS  PubMed  Google Scholar 

  179. Sato T, et al. Hormonal regulation of collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by progesterone and oestradiol-17 beta. Biochem J. 1991;275(Pt 3):645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Junqueira LC, et al. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am J Obstet Gynecol. 1980;138:273–81.

    Article  CAS  PubMed  Google Scholar 

  181. Hertelendy F, Zakar T. Prostaglandins and the myometrium and cervix. Prostaglandins Leukotrienes and Essential Fatty Acids. 2004;70:207–22.

    Article  CAS  Google Scholar 

  182. Ramos JG, et al. Estrogen and progesterone modulation of eosinophilic infiltration of the rat uterine cervix. Steroids. 2000;65:409–14.

    Article  CAS  PubMed  Google Scholar 

  183. Barclay CG, et al. Interleukin-8 production by the human cervix. Am J Obstet Gynecol. 1993;169:625–32.

    Article  CAS  PubMed  Google Scholar 

  184. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 1989;84:1045–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18:502–19.

    CAS  PubMed  Google Scholar 

  186. Mesiano S. Myometrial progesterone responsiveness. SeminReprodMed. 2007;25:5–13.

    CAS  Google Scholar 

  187. Leonhardt SA, Boonyaratanakornkit V, Edwards DP. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 2003;68:761–70.

    Article  CAS  PubMed  Google Scholar 

  188. Yen SSC. In: SSC Y, Jaffe RB, editors. Endocrine-metabolic adaptation in pregnancy, in Reproductive endocrinology: W.B. Saunders, Philadelphia; 1991. p. 936–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaisbuch, E., Erez, O., Romero, R. (2021). Physiology of Progesterone. In: Carp, H.J. (eds) Progestogens in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-030-52508-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52508-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52507-1

  • Online ISBN: 978-3-030-52508-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics