Skip to main content

Design of Active High Lift Wing Configurations Via Fluid-Structure Interaction Simulation

  • Chapter
  • First Online:
Fundamentals of High Lift for Future Civil Aircraft

Abstract

The wing of an active high lift aircraft configuration with an UHBR engine is structurally sized. The FEA details droop nose and flaps and uses loads from 3D CFD RANS simulations for the fully stressed design. The sizing yields a comparable skin thickness distribution compared to a similar wing configuration with a Turboprop engine. The differences in mass result mainly from the relatively high UHBR engine weight and the higher sweep angle. Furthermore the steady aeroelastic equilibrium is computed with a partitioned approach for the landing configuration at optimal circulation control. Flow separation is initiated at the end of the unprotected leading edge, propagating to the outboard main wing and aileron. The effect of the wing elasticity onto the aerodynamics is negligible due to the high stiffness of the UHBR configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radespiel, R., Heinze, W.: SFB 880: Fundamentals of high lift for future commercial aircraft. CEAS Aeronaut. J. 5(3), 239–251 (2014). https://doi.org/10.1007/s13272-014-0103-6

  2. Griffin Jr, R.N., Holzhauser, C.A., Weiberg, J.A.: Large-scale wind-tunnel tests of an airplane model with an unswept, aspect-ratio-10 wing, two propellers, and blowing flaps. Technical report (1958)

    Google Scholar 

  3. Deal, P., Grunwald, K.J., Hall, A.: Flight investigation of performance characteristics during landing approach of a large powered-lift jet transport. Technical report (1967)

    Google Scholar 

  4. Innis, R.C., Holzhauser, C.A., Quigley, H.C.: Airworthiness considerations for stol aircraft. Technical report (1970)

    Google Scholar 

  5. Heinze, W., Österheld, C. M., Horst, P.: Multidisziplinäres Flugzeugentwurfsverfahren PrADO—Programmentwurf und Anwendung im Rahmen von Flugzeug-Konzeptstudien. Deutsche Gesellschaft für Luft-und Raumfahrt (DGLR), vol. 3, pp. 1701–1712, Bonn (2001)

    Google Scholar 

  6. Young, T.: Outlines of experiments and inquiries respecting sound and light. Philos. Trans. R. Soc. Lond. 90, 106–150 (1800)

    Google Scholar 

  7. Lighthill, M.: Notes on the deflection of jets by insertion of curved surfaces, and on the design of bends in wind tunnels. Reports and memoranda 2105, Aeronautics Research Council (1945)

    Google Scholar 

  8. Korbacher, G.: Aerodynamics of powered high-lift systems. Ann. Rev. Fluid Mech. 6(1), 319–358 (1974). https://doi.org/10.1146/annurev.fl.06.010174.001535

  9. Wood, N.: Circulation control airfoils—past, present, future. Technical report 85-0204, AIAA (1985). https://doi.org/10.2514/6.1985-204

  10. Sommerwerk, K., Haupt, M.: Design analysis and sizing of a circulation controlled CFRP wing with Coandă flaps via CFD-CSM coupling. CEAS Aeronaut. J. 5(1), 95–108 (2014). https://doi.org/10.1007/s13272-013-0093-9

  11. Sommerwerk, K., Michels, B., Haupt, M.C., Horst, P.: Influence of engine modeling on structural sizing and approach aerodynamics of a circulation controlled wing. CEAS Aeronaut. J. 9(1), 219–233 (2018). https://doi.org/10.1007/s13272-018-0290-7

  12. Sommerwerk, K., Michels, B., Lindhorst, K., Haupt, M.C., Horst, P.: Application of efficient surrogate modeling to aeroelastic analyses of an aircraft wing. Aerosp. Sci. Technol. 55, 314–323 (2016)

    Article  Google Scholar 

  13. Sommerwerk, K., Krukow, I., Haupt, M., Dinkler, D.: Investigation of aeroelastic effects of a circulation controlled wing. AIAA J. Aircr. (Advance online publication), 1–11 (2016). https://doi.org/10.2514/1.C033780

  14. Neuert, N., Dinkler, D.: Aeroelastic behaviour of a parameterised circulation-controlled wing. CEAS Aeronaut. J. 10(3), 955–964 (2019). https://doi.org/10.1007/s13272-018-0348-6

  15. Neuert, N., Dinkler, D.: Aeroelastic behaviour of a wing with over-the-wing mounted uhbr engine. In: Deutscher Luft- und Raumfahrtkongress (2019)

    Google Scholar 

  16. Keller, D., Rudnik, R.: Configurational aspects of a circulation controlled high-lift system for a medium-haul transport aircraft In: Deutscher Luft- und Raumfahrtkongress 2019 DocumentID 490128

    Google Scholar 

  17. Haas, D., Chopra, I.: Static aeroelastic characteristics of circulation control wings. J. Aircr. 25(10), 948–954 (1988). https://doi.org/10.2514/3.45684

  18. Schwamborn, D., Gardner, A., von Geyr, H., Krumbein, A., Lüdecke, H.: Development of the DLR TAU-code for aerospace applications. In: Proceedings of the International Conference on Aerospace Science and Technology, pp. 26–28. Bangalore, India (2008)

    Google Scholar 

  19. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92–0439, (1992). https://doi.org/10.2514/6.1992-439

  20. Puck, A., Schürmann, H.: Failure analysis of frp laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

    Article  Google Scholar 

  21. Haupt, M., Niesner, R., Unger, R., Horst, P.: Computational aero-structural coupling for hypersonic applications. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, pp. 5–8 (2006). https://doi.org/10.2514/6.2006-3252

  22. Rendall, T., Allen, C.: Efficient mesh motion using radial basis functions with data reduction algorithms. J. Comput. Phys. 228(17), 6231–6249 (2009). https://doi.org/10.1016/j.jcp.2009.05.013

  23. Sommerwerk, K.: Isogeometrische Analyse für die Optimierung von Leichtbaustrukturen im Flugzeugbau. TU Braunschweig—Niedersächsisches Forschungszentrum für Luftfahrt, 2017. Doctoral dissertation

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding as part of the Coordinated Research Centre 880 provided by the German Research Foundation (Deutsche Forschungsgemeinschaft-DFG).

The computations were performed with resources provided by the North-German Supercomputing Alliance (HLRN).

The DLR-TAU computations have been set up with the help of Dennis Keller from Institute of Aerodynamics and Flow Technology, German Aerospace Center, Brunswick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Runge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runge, F., Sommerwerk, K., Rohdenburg, M., Haupt, M.C. (2021). Design of Active High Lift Wing Configurations Via Fluid-Structure Interaction Simulation. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics