Skip to main content

Plasma Surface Modification of Polymers for Biomedical Uses

  • Chapter
  • First Online:
Plasma Modification of Polyolefins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Polyolefins (POs) are a class of synthetic polymers that appear most popularly in daily uses. Despite the natural hdydrophobic characteristic of these materials, the applications of them in biomedicine are very common and important, thank to plasma surface processing technology. By processing, the surfaces of POs have been modified in aspect of morphology and chemical compositions. Thereby the surfaces own high roughness with significant ratio of polar groups after plasma processing, become water-favorable surface. This modification is a key factor to extensively expand the applications of POs into biomedical uses. The chapter shows a close perspective of interaction process between plasma and POs surface, which transfers the surface characteristics to biocompatibility, hydrophilicity and widens their applications in antibacterial, bioadhesive, tissue generation or food container.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lan, P.-T., Jeon, B.-H.: Determination of the electron collision cross-section set for the C4F6 molecule by using an electron swarm study. J. Korean Phys. Soc. 64(9), 1320–1326 (2014)

    Article  CAS  Google Scholar 

  2. Bastykova, N.K., Moldabekov, Z.A., Kodanova, S.K., Ramazanov, T.S.: Collision between a charged particle and a polarizable neutral particle in plasmas. Phys. Plasmas 27(4), 044502 (2020)

    Google Scholar 

  3. Phan, L.T., Yoon, S.M., Moon, M.W.: Plasma-based nanostructuring of polymers: a review. Polymers-Basel 9(9) (2017)

    Google Scholar 

  4. Lee, A., Moon, M.W., Lim, H., Kim, W.D., Kim, H.Y.: Water harvest via dewing. Langmuir 28(27), 10183–10191 (2012)

    Article  CAS  Google Scholar 

  5. Brown, P.S., Bhushan, B.: Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique. Sci. Rep-Uk 5 (2015)

    Google Scholar 

  6. Tsougeni, K., Papadakis, G., Gianneli, M., Grammoustianou, A., Constantoudis, V., Dupuy, B., Petrou, P.S., Kakabakos, S.E., Tserepi, A., Gizeli, E., Gogolides, E.: Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab. Chip. 16(1), 120–131 (2016)

    Article  CAS  Google Scholar 

  7. Togonal, A.S., Foldyna, M., Chen, W.H., Wang, J.X., Neplokh, V., Tchernycheva, M., Nassar, J., Cabarrocas, P.R.I.: Rusli, core-shell heterojunction solar cells based on disordered silicon nanowire arrays. J. Phys. Chem. C 120(5), 2962–2972 (2016)

    Article  CAS  Google Scholar 

  8. Profili, J., Rousselot, S., Tomassi, E., Briqueleur, E., Ayme-Perrot, D., Stafford, L., Dolle, M.: Toward more sustainable rechargeable aqueous batteries using plasma-treated cellulose-based li-ion electrodes. Acs Sustain. Chem. Eng. 8(12), 4728–4733 (2020)

    Article  CAS  Google Scholar 

  9. Garcia, L.E.G., MacGregor-Ramiasa, M., Visalakshan, R.M., Vasilev, K.: Protein interactions with nanoengineered polyoxazoline surfaces generated via plasma deposition. Langmuir 33(29), 7322–7331 (2017)

    Article  Google Scholar 

  10. Wang, Y.Z., Hillmyer, M.A.: Oxidatively stable polyolefin thermoplastics and elastomers for biomedical applications. Acs Macro Lett. 6(6), 613–618 (2017)

    Article  CAS  Google Scholar 

  11. Sauter, D.W., Taoufik, M., Boisson, C.: Polyolefins, a Success Story. Polymers-Basel 9(6) (2017)

    Google Scholar 

  12. Champetier, R.L.G.: Chimie et toxicologie des matières plastiques, p. 57. Compagnie française d’éditions, Paris (1964)

    Google Scholar 

  13. Subramaniam, A., Sethuraman, S.: Chapter 18—biomedical applications of nondegradable polymers. In: Kumbar, S.G., Laurencin, C.T., Deng, M. (eds.) Natural and Synthetic Biomedical Polymers, pp. 301–308. Elsevier, Oxford (2014)

    Chapter  Google Scholar 

  14. Paxton, N.C., Allenby, M.C., Lewis, P.M., Woodruff, M.A.: Biomedical applications of polyethylene. Eur. Polym. J. 118, 412–428 (2019)

    Article  CAS  Google Scholar 

  15. Lukowiak, M.C., Ziem, B., Achazi, K., Gunkel-Grabole, G., Popeney, C.S., Thota, B.N.S., Böttcher, C., Krueger, A., Guan, Z., Haag, R.: Carbon-based cores with polyglycerol shells—the importance of core flexibility for encapsulation of hydrophobic guests. J. Mater. Chem. B 3(5), 719–722 (2015)

    Article  CAS  Google Scholar 

  16. Kurtz, S.M.: UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 3rd edn., p. xxiv, 815 pages. Elsevier/WA, William Andrew is an i,mprint of Elsevier, Amsterdam, Boston (2016)

    Google Scholar 

  17. Wolf, C., Lederer, K., Pfragner, R., Schauenstein, K., Ingolic, E., Siegl, V.: Biocompatibility of ultra-high molecular weight polyethylene (UHMW-PE) stabilized with α-tocopherol used for joint endoprostheses assessed in vitro. J. Mater. Sci. Mater. Med. 18(6), 1247–1252 (2007)

    Article  CAS  Google Scholar 

  18. Novotná, Z., Lacmanová, V., Rimpelová, S., Juřik, P., Polívková, M., Å vorčik, V.: Biocompatibility of Modified Ultra-High-Molecular-Weight Polyethylene, p. 99300Y (2016)

    Google Scholar 

  19. Hussain, M., Naqvi, R.A., Abbas, N., Khan, S.M., Nawaz, S., Hussain, A., Zahra, N., Khalid, M.W.: Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers-Basel 12(2) (2020)

    Google Scholar 

  20. Fernandez-Bueno, I., Di Lauro, S., Alvarez, I., Lopez, J.C., Garcia-Gutierrez, M.T., Fernandez, I., Larra, E., Pastor, J.C.: Safety and biocompatibility of a new high-density polyethylene-based spherical integrated porous orbital implant: an experimental study in rabbits. J Ophthalmol (2015)

    Google Scholar 

  21. Gibon, E., Cordova, L.A., Lu, L., Lin, T.H., Yao, Z.Y., Hamadouche, M., Goodman, S.B.: The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J. Biomed. Mater. Res. B 105(6), 1685–1691 (2017)

    Google Scholar 

  22. Gardette, M., Perthue, A., Gardette, J.L., Janecska, T., Foldes, E., Pukanszky, B., Therias, S.: Photo- and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym. Degrad. Stabil. 98(11), 2383–2390 (2013)

    Article  CAS  Google Scholar 

  23. Lee, S., Maronian, N., Most, S.P., Whipple, M.E., McCulloch, T.M., Stanley, R.B., Farwell, G.: Porous high-density polyethylene for orbital reconstruction. Arch. Otolaryngol. 131(5), 446–450 (2005)

    Article  Google Scholar 

  24. Zaikov, G.E., Gumargalieva, K.Z., Polishchuk, A.Y., Adamyan, A.A., Vinokurova, T.I.: Biodegradation of polyolefins in biomedical applications. Polym.-Plast. Technol. 38(4), 621–646 (1999)

    Article  CAS  Google Scholar 

  25. Shubhra, Q.T.H., Alam, A., Quaiyyum, M.A.: Mechanical properties of polypropylene composites: a review. J. Thermoplast Compos. 26(3), 362–391 (2011)

    Article  Google Scholar 

  26. Mandolfino, C.: Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coat. Technol. 366, 331–337 (2019)

    Article  CAS  Google Scholar 

  27. Younis, A.A.: Flammability properties of polypropylene containing montmorillonite and some of silicon compounds. Egyptian J. Petroleum 26(1), 1–7 (2017)

    Article  Google Scholar 

  28. Nageswaran, G., Jothi, L., Jagannathan, S.: Chapter 4—plasma assisted polymer modifications. In Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., K.M, P. (eds.) Non-Thermal Plasma Technology for Polymeric Materials, pp. 95–127. Elsevier (2019)

    Google Scholar 

  29. Hassan, A., Aal, S.A.A., Shehata, M.M., El-Saftawy, A.A.: Plasma-etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 26(7) (2019)

    Google Scholar 

  30. Ren, C.S., Wang, K., Nie, Q.Y., Wang, D.Z., Guo, S.H.: Surface modification of PE film by DBD plasma in air. Appl. Surf. Sci. 255(5, Part 2), 3421–3425 (2008)

    Google Scholar 

  31. Lehocky, M., Drnovska, H., Lapcikova, B., Barros-Timmons, A.M., Trindade, T., Zembala, M., Lapcik, L.: Plasma surface modification of polyethylene. Colloid Surf. A 222(1–3), 125–131 (2003)

    Article  CAS  Google Scholar 

  32. Abusrafa, A.E., Habib, S., Krupa, I., Ouederni, M., Popelka, A.: Modification of polyethylene by rf plasma in different/mixture gases. Coatings 9(2) (2019)

    Google Scholar 

  33. Jin, S.Y., Manuel, J., Zhao, X., Park, W.H., Ahn, J.H.: Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017)

    Article  CAS  Google Scholar 

  34. Russo, P., Vitiello, L., Sbardella, F., Santos, J.I., Tirillo, J., Bracciale, M.P., Rivilla, I., Sarasini, F.: Effect of carbon nanostructures and fatty acid treatment on the mechanical and thermal performances of flax/polypropylene composites. Polymers-Basel 12(2) (2020)

    Google Scholar 

  35. Zhang, P.H., Zhang, S., Kong, F., Zhang, C., Dong, P., Yan, P., Cheng, X., Ostrikov, K., Shao, T.: Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum. Surf. Coat. Technol. 387 (2020)

    Google Scholar 

  36. Mohammadtaheri, S., Jaleh, B., Mohazzab, B.F., Eslamipanah, M., Nasrollahzadeh, M., Varma, R.S.: Greener hydrophilicity improvement of polypropylene membrane by ArF excimer laser treatment. Surf. Coat. Technol. 399 (2020)

    Google Scholar 

  37. Mandolfino, C., Lertora, E., Gambaro, C., Pizzorni, M.: Functionalization of neutral polypropylene by using low pressure plasma treatment: effects on surface characteristics and adhesion properties. Polymers-Basel 11(2) (2019)

    Google Scholar 

  38. Carrino, L., Moroni, G., Polini, W.: Cold plasma treatment of polypropylene surface: a study on wettability and adhesion. J. Mater. Process Tech. 121(2), 373–382 (2002)

    Article  CAS  Google Scholar 

  39. Grenadyorov, A.S., Solovyev, A.A., Ivanova, NM., Zhulkov, M.O., Chernyavskiy, A.M., Malashchenko, V.V., Khlusov, I.A.: Enhancement of the adhesive strength of antithrombogenic and hemocompatible a-C:H:SiOx films to polypropylene. Surf. Coat. Technol. 399, 126132 (2020)

    Google Scholar 

  40. Ahmed, S.F., Rho, G.H., Lee, J.Y., Kim, S.J., Kim, H.Y., Jang, Y.J., Moon, M.W., Lee, K.R.: Nano-embossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf. Coat. Tech. 205, S104–S108 (2010)

    Article  CAS  Google Scholar 

  41. Chansoo Kim, S.F.A., Moon, M.-W., Lee, K.-R.: MD simulation of structural change of polypropylene induced by high energy ion bombardment. In: Proceedings of the Korean Vacuum Society conference (SF-P019) (2010)

    Google Scholar 

  42. Kliewer, S., Wicha, S.G., Broker, A., Naundorf, T., Catmadim, T., Oellingrath, E.K., Rohnke, M., Streit, W.R., Vollstedt, C., Kipphardt, H., Maison, W.: Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium alts. Colloid Surf. B 186 (2020)

    Google Scholar 

  43. Dvorakova, H., Cech, J., Stupavska, M., Prokes, L., Jurmanova, J., Bursikova, V., Rahel’, J., St'ahel, P.: Fast surface hydrophilization via atmospheric pressure plasma polymerization for biological and technical applications. Polymers-Basel 11(10) (2019)

    Google Scholar 

  44. Mostofi Sarkari, N., Dogan, O., Bat, E., Mohseni, M., Ebrahimi, M.: Tethering vapor-phase deposited GLYMO coupling molecules to silane-crosslinked polyethylene surface via plasma grafting approaches. Appl. Surf. Sci. 513 (2020)

    Google Scholar 

  45. Spyrides, S.M., Prado, M., Araujo, J.R., Simao, R.A., Bastian, F.L.: Effects of plasma on polyethylene fi ber surface for prosthodontic application. J. Appl. Oral Sci. 23(6), 614–622 (2015)

    Article  CAS  Google Scholar 

  46. Woskowicz, E., Lozynska, M., Kowalik-Klimczak, A., Kacprzynska-Golacka, J., Osuch-Slomka, E., Piasek, A., Gradon, L.: Plasma deposition of antimicrobial coatings based on silver and copper on polypropylene. Polimery-W 65(1), 33–43 (2020)

    Article  CAS  Google Scholar 

  47. Markovic, D., Tseng, H.H., Nunney, T., Radoicic, M., Ilic-Tomic, T., Radetic, M.: Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. Appl. Surf. Sci. 527 (2020)

    Google Scholar 

  48. Popelka, A., Novak, I., Lehocky, M., Chodak, I., Sedliacik, J., Gajtanska, M., Sedliacikova, M., Vesel, A., Junkar, I., Kleinova, A., Spirkova, M., Bilek, F.: Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules 17(1), 762–785 (2012)

    Article  CAS  Google Scholar 

  49. Pandiyaraj, K.N., Ramkumar, M.C., Arun Kumar, A., Padmanabhan, P.V.A., Pichumani, M., Bendavid, A., Cools, P., De Geyter, N., Morent, R., Kumar, V., Gopinath, P., Su, P.-G., Deshmukh, R.R.: Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Mater. Sci. Eng. C 94, 150–160 (2019)

    Article  CAS  Google Scholar 

  50. Tsou, C.H., Yao, W.H., Hung, W.S., Suen, M.C., De Guzman, M., Chen, J., Tsou, C.Y., Wang, R.Y., Chen, J.C., Wu, C.S.: Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties. Ind. Eng. Chem. Res. 57(7), 2537–2545 (2018)

    Article  CAS  Google Scholar 

  51. Lukowiak, M.C., Wettmarshausen, S., Hidde, G., Landsberger, P., Boenke, V., Rodenacker, K., Braun, U., Friedrich, J.F., Gorbushina, A.A., Haag, R.: Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polym. Chem.-Uk 6(8), 1350–1359 (2015)

    Article  CAS  Google Scholar 

  52. Reznickova, A., Novotna, Z., Kolska, Z., Kasalkova, N.S., Rimpelova, S., Svorcik, V.: Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Mater. Sci. Eng. C Mater. Biol. Appl. 52, 259–266 (2015)

    Article  CAS  Google Scholar 

  53. Svorcik, V., Makajova, Z., Kasalkova-Slepickova, N., Kolska, Z., Bacakova, L.: Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications. J. Nanosci. Nanotechnol. 12(8), 6665–6671 (2012)

    Article  CAS  Google Scholar 

  54. Houshyar, S., Sarker, A., Jadhav, A., Kumar, G.S., Bhattacharyya, A., Nayak, R., Shanks, R.A., Saha, T., Rifai, A., Padhye, R., Fox, K.: Polypropylene-nanodiamond composite for hernia mesh. Mat. Sci. Eng. C-Mater. 111 (2020)

    Google Scholar 

  55. Saitaer, X., Sanbhal, N., Qiao, Y.S., Li, Y., Gao, J., Brochu, G., Guidoin, R., Khatri, A., Wang, L.: Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: antibacterial and drug release properties. Coatings 9(3) (2019)

    Google Scholar 

  56. Lim, J.S., Kook, M.S., Jung, S., Park, H.J., Ohk, S.H., Oh, H.K.: Plasma Treated High-Density Polyethylene (HDPE) Medpor Implant Immobilized with rhBMP-2 for improving the bone regeneration. J Nanomater (2014)

    Google Scholar 

  57. Kim, S.J., Song, E., Jo, K., Yun, T., Moon, M.-W., Lee, K.-R.: Composite oxygen-barrier coating on a polypropylene food container. Thin Solid Films 540, 112–117 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Lan Thi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thi, P.L., Myoung-Woon, M. (2022). Plasma Surface Modification of Polymers for Biomedical Uses. In: Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S. (eds) Plasma Modification of Polyolefins. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-52264-3_10

Download citation

Publish with us

Policies and ethics