Skip to main content

Maxillofacial Reconstruction: From Autogenous Bone Grafts to Bone Tissue Engineering

  • Chapter
  • First Online:
Advances in Dental Implantology using Nanomaterials and Allied Technology Applications

Abstract

Maxillofacial reconstruction (using autogenous bone grafts, biomaterials, growth factors, distraction osteogenesis, dental implants, and bone tissue engineering) is complex and poses significant challenges to surgeons. The use of these techniques has profoundly improved patients’ function, form, and quality of life. Several techniques are currently being used to treat bone defects of the jaws (ranging from minor to major defects), including autogenous bone grafting, guided bone regeneration, the use of growth factors with biomaterials, and distraction osteogenesis. Dental implants have become a routine treatment for the final and total rehabilitation of patients. Bioengineering of autologous bone is an exciting minimally invasive alternative to bone harvesting techniques to replace missing bone of any part of the skeleton. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials, autologous mesenchymal stem cells, and growth factors. The purpose of this chapter is to provide a variety of different current evidence-based treatment options, as well as novel tissue engineering technologies for the reconstruction of minor and major jaw defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Checchi V, Gasparro R, Pistilli R, Canullo L, Felice P. Clinical classification of bone augmentation procedure failures in the atrophic anterior maxillae: esthetic consequences and treatment options. Biomed Res Int. 2019;2019:4386709.

    Article  Google Scholar 

  2. Nguyen TTH, Eo MY, Kuk TS, Myoung H, Kim SM. Rehabilitation of atrophic jaw using iliac onlay bone graft combined with dental implants. Int J Implant Dent. 2019;5(1):11.

    Article  Google Scholar 

  3. Sethi A, Kaus T, Cawood JI, Plaha H, Boscoe M, Sochor P. Onlay bone grafts from iliac crest: a retrospective analysis. Int J Oral Maxillofac Surg. 2020;49(2):264–71.

    Article  CAS  Google Scholar 

  4. Dodson TB, Smith RA. Mandibular reconstruction with autogenous and alloplastic materials following resection of an odontogenic myxoma. Int J Oral Maxillofac Implants. 1987;2(4):227–9.

    CAS  Google Scholar 

  5. Dodson TB, Bays RA, Pfeffle RC, Barrow DL. Cranial bone graft to reconstruct the mandibular condyle in Macaca mulatta. J Oral Maxillofac Surg. 1997;55(3):260–7.

    Article  CAS  Google Scholar 

  6. Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2013;7:S203–17.

    Google Scholar 

  7. Hameed MH, Gul M, Ghafoor R, Khan FR. Vertical ridge gain with various bone augmentation techniques: a systematic review and meta-analysis. J Prosthodont. 2019;28(4):421–7.

    Article  Google Scholar 

  8. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–37.

    Article  Google Scholar 

  9. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62(2):152–61.

    Article  Google Scholar 

  10. Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G, Dohan Ehrenfest DM. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol. 2012;13(7):1231–56.

    Article  CAS  Google Scholar 

  11. Wang J, Zheng Y, Zhao J, Liu T, Gao L, Gu Z, Wu G. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation. J Clin Periodontol. 2012;39(1):98–105.

    Article  Google Scholar 

  12. Potres Z, Deshpande S, Klöeppel H, Voss K, Klineberg I. Assisted wound healing and vertical bone regeneration with simultaneous implant placement: a histologic pilot study. Int J Oral Maxillofac Implants. 2016;31(1):45–54.

    Article  Google Scholar 

  13. Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Osteogenic potential of rhBMP9 combined with a bovine-derived natural bone mineral scaffold compared to rhBMP2. Clin Oral Implants Res. 2017;28(4):381–7.

    Article  Google Scholar 

  14. Gonzaga MG, Dos Santos Kotake BG, de Figueiredo FAT, Feldman S, Ervolino E, Dos Santos MCG, Issa JPM. Effectiveness of rhBMP-2 association to autogenous, allogeneic, and heterologous bone grafts. Microsc Res Tech. 2019;82(6):689–95.

    Article  CAS  Google Scholar 

  15. Melville JC, Mañón VA, Blackburn C, Young S. Current methods of maxillofacial tissue engineering. Oral Maxillofac Surg Clin North Am. 2019;31(4):579–91.

    Article  Google Scholar 

  16. Konopnicki S, Troulis MJ. Mandibular tissue engineering: past, present, future. J Oral Maxillofac Surg. 2015;73(12 Suppl):S136–46.

    Article  Google Scholar 

  17. Aghaloo TL, Hadaya D. Basic principles of bioengineering and regeneration. Oral Maxillofac Surg Clin North Am. 2017;29(1):1–7.

    Article  Google Scholar 

  18. Galindo-Moreno P, Ávila G, Fernández-Barbero JE, Mesa F, O’Valle-Ravassa F, Wang HL. Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clin Oral Implants Res. 2008;19(8):755–9.

    Article  Google Scholar 

  19. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3(1):1–17.

    Article  Google Scholar 

  20. Sakkas A, Schramm A, Winter K, Wilde F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. J Craniomaxillofac Surg. 2018;46(2):312–22.

    Article  Google Scholar 

  21. Atef M, Osman AH, Hakam M. Autogenous interpositional block graft vs onlay graft for horizontal ridge augmentation in the mandible. Clin Implant Dent Relat Res. 2019;21(4):678–85.

    Article  Google Scholar 

  22. Tolstunov L, Hamrick JFE, Broumand V, Shilo D, Rachmiel A. Bone augmentation techniques for horizontal and vertical alveolar ridge deficiency in oral implantology. Oral Maxillofac Surg Clin. 2019;31(2):163–91.

    Article  Google Scholar 

  23. Ardekian L, Dodson TB. Complications associated with the placement of dental implants. Oral Maxillofac Surg Clin North Am. 2003;15(2):243–9.

    Article  Google Scholar 

  24. Gjerde CG, Shanbhag S, Neppelberg E, Mustafa K, Gjengedal H. Patient experience following iliac crest-derived alveolar bone grafting and implant placement. Int J Implant Dent. 2020;6(1):4.

    Article  Google Scholar 

  25. Chiapasco M, Tommasato G, Palombo D, Del Fabbro M. A retrospective 10-year mean follow-up of implants placed in ridges grafted using autogenous mandibular blocks covered with bovine bone mineral and collagen membrane. Clin Oral Implants Res. 2020;31:328–40.

    Article  Google Scholar 

  26. Elnayef B, Porta C, Del Amo FSL, Mordini L, Gargallo-Albiol J, Hernández-Alfaro F. The fate of lateral ridge augmentation: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(3):622–35.

    Article  Google Scholar 

  27. Gaballah O, Abd-ElwahabRadi I. Limited evidence suggests guided bone regeneration with or without autogenous bone grafts are equivalently effective in horizontal bone gain. J Evid Based Dent Pract. 2019;19(4):101351.

    Article  Google Scholar 

  28. Urban IA, Monje A. Guided bone regeneration in alveolar bone reconstruction. Oral Maxillofac Surg Clin. 2019;31(2):331–8.

    Article  Google Scholar 

  29. Fontana F, Santoro F, Maiorana C, Iezzi G, Piattelli A, Simion M. Clinical and histologic evaluation of allogeneic bone matrix versus autogenous bone chips associated with titanium-reinforced e-PTFE membrane for vertical ridge augmentation: a prospective pilot study. Int J Oral Maxillofac Implants. 2008;23(6):2003–1012.

    Google Scholar 

  30. Soldatos NK, Stylianou P, Koidou VP, Angelov N, Yukna R, Romanos GE. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48(2):131–47.

    Google Scholar 

  31. Del Corso M, Vervelle A, Simonpieri A, Jimbo R, Inchingolo F, Sammartino G, Dohan Ehrenfest DM. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol. 2012;13(7):1207–30.

    Article  Google Scholar 

  32. Kökdere NN, Baykul T, Findik Y. The use of platelet-rich fibrin (PRF) and PRF-mixed particulated autogenous bone graft in the treatment of bone defects. An experimental and histomorphometrical study. Dent Res J (Isfahan). 2015;12(5):418–24.

    Article  Google Scholar 

  33. Patricia D, Gerard K. The family of bone morphogenetic proteins. Kidney Int. 2000;57(6):2207–14.

    Article  Google Scholar 

  34. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg A. 2003;85(8):1544–52.

    Article  Google Scholar 

  35. Nishimura R, Hata K, Ikeda F, Matsubara T, Yamashita K, Ichida F, Yoneda T. The role of Smads in BMP signaling. Front Biosci. 2003;8:275–84.

    Article  Google Scholar 

  36. Frédéric D, Luc S, Dominique H. Mechanisms of bone repair and regeneration. Trends Mol Med. 2009;15(9):417–29.

    Article  CAS  Google Scholar 

  37. James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng B Rev. 2016;22(4):284–97.

    Article  CAS  Google Scholar 

  38. Gothard D, Smith EL, Kanczler JM, Rashidi H, Qutachi O, Henstock J, Rotherham M, El Haj A, Shakesheff KM, Oreffo RO. Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man. Eur Cell Mater. 2014;28:166–207; discussion 207–8.

    Article  CAS  Google Scholar 

  39. Ben Amara H, Lee JW, Kim JJ, Kang YM, Kang EJ, Koo KT. Influence of rhBMP-2 on guided bone regeneration for placement and functional loading of dental implants: a radiographic and histologic study in dogs. Int J Oral Maxillofac Implants. 2017;32(6):265–76.

    Article  Google Scholar 

  40. Li F, Yu F, Liao X, Wu C, Wang Y, Li C, Lou F, Li B, Yin B, Wang C, Ye L. Efficacy of recombinant human BMP2 and PDGF-BB in orofacial bone regeneration: a systematic review and meta-analysis. Sci Rep. 2019;9(1):8073.

    Article  CAS  Google Scholar 

  41. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol. 2005;76(4):605–13.

    Article  CAS  Google Scholar 

  42. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93(4):335–45.

    Article  CAS  Google Scholar 

  43. Ehrenfest DD, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte-and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.

    Article  CAS  Google Scholar 

  44. Strauss FJ, Stähli A, Gruber R. The use of platelet-rich fibrin to enhance theoutcomes of implant therapy: a systematic review. Clin Oral Implants Res. 2018;29(Suppl 18):6–19.

    Article  Google Scholar 

  45. Caruana A, Savina D, Macedo JP, Soares SC. From platelet-rich plasma to advanced platelet-rich fibrin: biological achievements and clinical advances in modern surgery. Eur J Dent. 2019;13(2):280–6.

    Article  Google Scholar 

  46. Molemans B, Cortellini S, Jacobs R, Teughels W, Pinto N, Quirynen M. Simultaneous sinus floor elevation and implant placement using leukocyte-and platelet-rich fibrin as a sole graft material. Int J Oral Maxillofac Implants. 2019;34(5):1195–201.

    Article  Google Scholar 

  47. Medikeri RS, Meharwade V, Wate PM, Lele SV. Effect of PRF and allograft use on immediate implants at extraction sockets with periapical infection—clinical and cone beam CT findings. Bull Tokyo Dent Coll. 2017;59(2):97–109.

    Article  CAS  Google Scholar 

  48. Codivilla A. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Am J Onhop Surg. 1905;2(4):353–69.

    Google Scholar 

  49. Ilizarov G. The principles of the Ilizarov method. Bull Hospital Joint Dis Orthop. 1987;48(1):1–11.

    Google Scholar 

  50. Perrott DH, Berger R, Vargervik K, Kaban LB. Use of a skeletal distraction device to widen the mandible: a case report. J Oral Maxillofac Surg. 1993;51(4):435–9.

    Article  CAS  Google Scholar 

  51. McCarthy JG. The role of distraction osteogenesis in the reconstruction of the mandible in unilateral craniofacial microsomia. Clin Plast Surg. 1994;21(4):625–31.

    Article  CAS  Google Scholar 

  52. Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg. 1996;54(1):45–53.

    Article  CAS  Google Scholar 

  53. Moore C, Campbell PM, Dechow PC, Ellis ML, Buschang PH. Effects of latency on the quality and quantity of bone produced by dentoalveolar distraction osteogenesis. Am J Orthod Dentofac Orthop. 2011;140(4):470–8.

    Article  Google Scholar 

  54. Rachmiel A, Shilo D, Aizenbud D, Emodi O. Vertical alveolar distraction osteogenesis of the atrophic posterior mandible before dental implant insertion. J Oral Maxillofac Surg. 2017;75(6):1164–75.

    Article  Google Scholar 

  55. Troulis MJ, Padwa B, Kaban LB. Distraction osteogenesis: past, present, and future. Facial Plast Surg. 1998;14(3):205–16.

    Article  CAS  Google Scholar 

  56. Glowacki J, Shusterman EM, Troulis M, Holmes R, Perrott D, Kaban LB. Distraction osteogenesis of the porcine mandible: histomorphometric evaluation of bone. Plast Reconstr Surg. 2004;113(2):566–73.

    Article  Google Scholar 

  57. Peacock ZS, Tricomi BJ, Murphy BA, Magill JC, Kaban LB, Troulis MJ. Automated continuous distraction osteogenesis may allow faster distraction rates: a preliminary study. J Oral Maxillofac Surg. 2013;71(6):1073–84.

    Article  Google Scholar 

  58. Onger ME, Bereket C, Sener I, Ozkan N, Senel E, Polat AV. Is it possible to change of the duration of consolidation period in the distraction osteogenesis with the repetition of extracorporeal shock waves? Med Oral Patol Oral Cir Bucal. 2017;22(2):e251–7.

    Google Scholar 

  59. Troulis M, Glowacki J, Perrott DH, Kaban LB. Effects of latency and rate on bone formation in a porcine mandibular distraction model. J Oral Maxillofac Surg. 2000;58(5):507–13.

    Article  CAS  Google Scholar 

  60. Gunbay T, Koyuncu BÖ, Akay MC, Sipahi A, Tekin U. Results and complications of alveolar distraction osteogenesis to enhance vertical bone height. OOOE. 2008;105(5):7–13.

    Google Scholar 

  61. Mehra P, Figueroa R. Vector control in alveolar distraction osteogenesis. J Oral Maxillofac Surg. 2008;66(4):776–9.

    Article  Google Scholar 

  62. Temple JP, Hutton DL, Hung BP, Huri PY, Cook CA, Kondragunta R, Jia X, Grayson WL. Engineering anatomically shaped vascularized bone grafts with hascs and 3d-printed pcl scaffolds. J Biomed Mater Res A. 2014;102(12):4317–25.

    Google Scholar 

  63. Tatara AM, Shah SR, Demian N, Ho T, Shum J, van den Beucken J, Jansen JA, Wong ME, Mikos AG. Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomater. 2016;45:72–84.

    Article  CAS  Google Scholar 

  64. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.

    Article  CAS  Google Scholar 

  65. Sparks DS, Saifzadeh S, Savi FM, Dlaska CE, Berner A, Henkel J, Reichert JC, Wullschleger M, Ren J, Cipitria A, McGovern JA, Steck R, Wagels M, Woodruff MA, Schuetz MA, Hutmacher DW. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc. 2020;15:877–924. [Epub ahead of print].

    Article  CAS  Google Scholar 

  66. Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8(343):343ra83.

    Article  CAS  Google Scholar 

  67. Konopnicki S, Sharaf B, Resnick C, Patenaude A, Pogal-Sussman T, Hwang KG, Abukawa H, Troulis MJ. Tissue-engineered bone with 3-dimensionally printed beta-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model. J Oral Maxillofac Surg. 2015;73(5):1016.e1–1016.e11.

    Article  Google Scholar 

  68. Shao H, Sun M, Zhang F, Liu A, He Y, Fu J, Yang X, Wang H, Gou Z. Custom repair of mandibular bone defects with 3d printed bioceramic scaffolds. J Dent Res. 2018;97(1):68–76.

    Article  CAS  Google Scholar 

  69. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(9 Suppl):143S–52S.

    Article  CAS  Google Scholar 

  70. Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y. Applications of 3d printing on craniofacial bone repair: a systematic review. J Dent. 2019;80:1–14.

    Article  Google Scholar 

  71. Hollister SJ, Flanagan CL, Morrison RJ, Patel JJ, Wheeler MB, Edwards SP, Green GE. Integrating image-based design and 3D biomaterial printing to create patient specific devices within a design control framework for clinical translation. ACS Biomater Sci Eng. 2016;2(10):1827–36.

    Article  CAS  Google Scholar 

  72. VanKoevering KK, Zopf DA, Hollister SJ. Tissue engineering and 3-dimensional modeling for facial reconstruction. Facial Plast Surg Clin North Am. 2019;27(1):151–61.

    Article  Google Scholar 

  73. Wong ME, Kau CH, Melville JC, Patel T, Spagnoli DB. Bone reconstruction planning using computer technology for surgical management of severe maxillomandibular atrophy. Oral Maxillofac Surg Clin North Am. 2019;31(3):457–72.

    Article  Google Scholar 

  74. Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today. 2010;13(1–2):24–30.

    Article  CAS  Google Scholar 

  75. Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011;1(2):121–64.

    Article  Google Scholar 

  76. Williams DF. Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol. 2019;7:127.

    Article  Google Scholar 

  77. Abukawa H, Zhang W, Young CS, Asrican R, Vacanti JP, Kaban LB, Troulis MJ, Yelick PC. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67(2):335–47.

    Article  Google Scholar 

  78. Khojasteh A, Behnia H, Hosseini FS, Dehghan MM, Abbasnia P, Abbas FM. The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. J Biomed Mater Res B Appl Biomater. 2013;101(5):848–54.

    Article  CAS  Google Scholar 

  79. Sandor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerstrom B, Patrikoski M, Seppanen R, Miettinen S, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530–40.

    Article  CAS  Google Scholar 

  80. Kawecki F, Clafshenkel WP, Fortin M, Auger FA, Fradette J. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies. Adv Healthc Mater. 2018;7(6):e1700919.

    Article  CAS  Google Scholar 

  81. Kasper FK, Melville J, Shum J, Wong M, Young S. Tissue engineered prevascularized bone and soft tissue flaps. Oral Maxillofac Surg Clin North Am. 2017;29(1):63–73.

    Article  Google Scholar 

  82. Tian T, Zhang T, Lin Y, Cai X. Vascularization in craniofacial bone tissue engineering. J Dent Res. 2018;97(9):969–76.

    Article  CAS  Google Scholar 

  83. Sharaf B, Faris CB, Abukawa H, Susarla SM, Vacanti JP, Kaban LB, Troulis MJ. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. J Oral Maxillofac Surg. 2012;70(3):647–56.

    Article  Google Scholar 

  84. Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, Wolff J. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 2016;34(9):700–10.

    Article  CAS  Google Scholar 

  85. Rai R, Raval R, Khandeparker RV, Chidrawar SK, Khan AA, Ganpat MS. Tissue engineering: step ahead in maxillofacial reconstruction. J Int Oral Health. 2015;7(9):138–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando P. S. Guastaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guastaldi, F.P.S., Takusagawa, T., McCain, J.P., Monteiro, J.L.G.C., Troulis, M.J. (2021). Maxillofacial Reconstruction: From Autogenous Bone Grafts to Bone Tissue Engineering. In: Chaughule, R.S., Dashaputra, R. (eds) Advances in Dental Implantology using Nanomaterials and Allied Technology Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52207-0_14

Download citation

Publish with us

Policies and ethics