Skip to main content

Measurement Systems for Wind, Solar and Hydro Power Applications

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

Wind, solar, and hydropower are major forms of the so-called renewable energies. Effective application of renewable energies to supply heat and electricity is weather dependent and needs short-term weather forecasts, as well as historical and climatological information. All relevant measurement sensors were introduced in previous chapters. Here, the special requirements of wind, radiation, and precipitation measurements for planning and operating renewable energy power plants are addressed. The cooling of conventional thermal power plants, the transmission of electricity in cables above ground, and the overall energy demand are weather dependent as well, and thus need atmospheric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Emeis: Wind Energy Meteorology – Atmospheric Physics for Wind Power Generation, Green Energy and Technology, 2nd edn. (Springer, Cham 2018)

    Google Scholar 

  • M. Sengupta, A. Habte, C. Gueymard, S. Wilbert, D. Renné, T. Stoffel: Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 2nd edn. (NREL, Golden 2017), NREL/TP-5D00-68886

    Google Scholar 

  • C.S. Kaunda, C.Z. Kimambo, T.K. Nielsen: Hydropower in the context of sustainable energy supply: A review of technologies and challenges, ISRN Renew. Energy (2012), https://doi.org/10.5402/2012/730631

    Article  Google Scholar 

  • L. Dubus, S. Muralidharan, A. Troccoli: What does the energy industry require from meteorology? In: Weather & Climate Services for the Energy Industry, ed. by A. Troccoli (Palgrave Macmillan, Cham 2018)

    Google Scholar 

  • ISO 9488: Solar Energy Vocabulary (ISO, Geneva 1999)

    Google Scholar 

  • IEC 61400-12-1: Wind Energy Generation Systems – Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines (VDE, Berlin 2017)

    Google Scholar 

  • A. Peña, R. Floors, A. Sathe, S.E. Gryning, R. Wagner, M.S. Courtney, X.G. Larsén, A.N. Hahmann, C.B. Hasager: Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark, Bound.-Layer Meteorol. 158(1), 1–26 (2016)

    Google Scholar 

  • M. Türk, K. Grigutsch, S. Emeis: The wind profile above the sea—Investigations basing on four years of FINO 1 data, DEWI Magazin 33, 12–16 (2008)

    Google Scholar 

  • J. Mann, N. Angelou, J. Arnqvist, D. Callies, E. Cantero, R. Chávez Arroyo, M. Courtney, J. Cuxart, E. Dellwik, J. Gottschall, S. Ivanell, P. Kühn, G. Lea, J.C. Matos, J.M.L.M. Palma, L. Pauscher, A. Peña, J. Sanz Rodrigo, S. Söderberg, N. Vasiljevic, C. Veiga Rodrigues: Complex terrain experiments in the new European wind atlas, Philos. Trans. R. Soc. 375(2091), 20160101 (2017)

    Google Scholar 

  • A. Clifton, S. Schreck, G. Scott, N. Kelley, J.K. Lundquist: Turbine inflow characterization at the National Wind Technology Center, J. Sol. Energy Eng. 135, 031017 (2013)

    Google Scholar 

  • A.B. Mouchot: La Chaleur Solaire et ses Applications Industrielles (Gauthier-Villars, Paris 1869)

    Google Scholar 

  • M.L. Wesely: Simplified techniques to study components of solar radiation under haze and clouds, J. Appl. Meteorol. 21, 373–383 (1982)

    Google Scholar 

  • G.O.G. Löf, J.A. Duffie, C.O. Smith: World distribution of solar radiation, Sol. Energy 10, 27–37 (1966)

    Google Scholar 

  • H.C.S. Thom: The rational relationship between heating degree days and temperature, Mon. Weather Rev. 82, 1–6 (1954)

    Google Scholar 

  • H. Landsberg: Bioclimatology of housing. In: Recent Studies in Bioclimatology, Meteorological Monographs, Vol. 2 (AMS, Boston 1954) pp. 81–98

    Google Scholar 

  • A. Betz: Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren, Z. Gesamte Turbinenwes. 26, 307–309 (1920)

    Google Scholar 

  • A. Betz: Wind-Energie und ihre Ausnutzung durch Windmühlen (Vandenhoeck & Ruprecht, Göttingen 1926)

    Google Scholar 

  • W. Weibull: A statistical distribution function of wide applicability, J. Appl. Mech. 73, 293–297 (1951)

    Google Scholar 

  • E.J. Gumbel: Statistics of Extremes (Columbia Univ. Press, New York, London 1958)

    Google Scholar 

  • R. Wagner, B. Cañadillas, A. Clifton, S. Feeney, N. Nygaard, M. Poodt, C. St. Martin, E. Tüxen, J.W. Wagenaar: Rotor equivalent wind speed for power curve measurement – Comparative exercise for IEA Wind Annex 32, J. Phys. Conf. Ser. 524(1), 012108 (2014)

    Google Scholar 

  • C.A. Paulson: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol. 9, 857–861 (1970)

    Google Scholar 

  • U. Högström: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Bound.-Layer Meteorol. 42, 55–78 (1988)

    Google Scholar 

  • J.A. Businger, J.C. Wyngaard, Y. Izumi, E.F. Bradley: Flux profile relationships in the atmospheric surface layer, J. Atmos. Sci. 28, 181–189 (1971)

    Google Scholar 

  • A.J. Dyer: A review of flux-profile relations, Bound.-Layer Meteorol. 7, 363–372 (1974)

    Google Scholar 

  • A.A.M. Holtslag, H.A.R. de Bruin: Applied modeling of the nighttime surface energy balance over land, J. Appl. Meteorol. 27, 689–704 (1988)

    Google Scholar 

  • M. Bartos, M. Chester, N. Johnson, B. Gorman, D. Eisenberg, I. Linkov, M. Bates: Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States, Environ. Res. Lett. 11(11), 114008 (2016)

    Google Scholar 

  • EN 50341-1:2012: Overhead Electrical Lines Exceeding AC 1 kV. General Requirements – Common Specifications (CENELEC, Brussels 2012)

    Google Scholar 

  • S. Emeis: Measurement Methods in Atmospheric Sciences – In Situ and Remote, Quantifying the Environment, Vol. 1 (Borntraeger, Stuttgart 2010)

    Google Scholar 

  • VDI 3786-2: Environmental Meteorology – Meteorological Measurements – Wind (Beuth, Berlin 2018)

    Google Scholar 

  • VDI 3786-12: Environmental Meteorology – Meteorological Measurements – Turbulence Measurements with Sonic Anemometers (Beuth, Berlin 2019)

    Google Scholar 

  • T.F. Pedersen, J.-Å. Dahlberg, A. Cuerva, F. Mouzakis, P. Busche, P. Eecen, A. Sanz-Andres, S. Franchini, S.M. Petersen: ACCUWIND – Accurate Wind Speed Measurements in Wind Energy (Summary Report) (Risø National Laboratory, Roskilde 2006), Risø Report Risø-R-1563(EN), http://www.windspeed.co.uk/ws/public/ACCUWIND-ris-r-1563.pdf, Accessed 21 July 2021

    Google Scholar 

  • S. Emeis: Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Atmospheric and Oceanographic Sciences Library, Vol. 40 (Springer, Dordrecht, Heidelberg, London, New York 2011)

    Google Scholar 

  • VDI 3786-11: Environmental Meteorology – Ground-Based Remote Sensing of the Wind Vector and the Vertical Structure of the Boundary Layer – Doppler Sodar (Beuth, Berlin 2015)

    Google Scholar 

  • ISO 28902-2: Air Quality – Environmental Meteorology – Part 2: Ground-Based Remote Sensing of Wind by Heterodyne Pulsed Doppler Lidar (ISO, Geneva 2017)

    Google Scholar 

  • VDI 3786-18: Environmental Meteorology – Ground-Based Remote Sensing of Temperature – Radio-Acoustic Sounding Systems (RASS) (Beuth, Berlin 2010)

    Google Scholar 

  • J. Röttger, M.-F. Larsen: UHF/VHF radar techniques for atmospheric research and wind profiler applications. In: Radar in Meteorology, ed. by D. Atlas (AMS, Boston 1990) pp. 235–281

    Google Scholar 

  • VDI 3786-17: Environmental Meteorology – Ground-Based Remote Sensing of the Wind Vector – Wind Profiler Radar (Beuth, Berlin 2007)

    Google Scholar 

  • W. Koch, F. Feser: Relationship between SAR-derived wind vectors and wind at 10-m height represented by a mesoscale model, Mon. Weather Rev. 134, 1505–1517 (2006)

    Google Scholar 

  • M.B. Christiansen, C.B. Hasager: Wake effects of large offshore wind farms identified from satellite SAR, Remote Sens. Environ. 98, 251–268 (2005)

    Google Scholar 

  • C.B. Hasager, P. Vincent, R. Husson, A. Mouche, M. Badger, A. Peña, P. Volker, J. Badger, A. Di Bella, A. Palomares, E. Cantero, P.M.F. Correia: Comparing satellite SAR and wind farm wake models, J. Phys. Conf. Ser. 625, 012035 (2015)

    Google Scholar 

  • A. Platis, S.K. Siedersleben, J. Bange, A. Lampert, K. Bärfuss, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms, Sci. Rep. 8, 2163 (2018)

    Google Scholar 

  • ISO 9901: Solar Energy – Field Pyranometers – Recommended Practice for Use (ISO, Geneva 1990)

    Google Scholar 

  • WMO: Guide to Instruments and Methods of Observation, WMO-No. 8, Volume I - Measurement of Meteorological Variables (World Meteorological Organization, Geneva 2018)

    Google Scholar 

  • L.J.B. McArthur: Baseline Surface Radiation Network (BSRN). Operations Manual (Version 2.1) (WMO, Geneva 2005), WCRP-121, WMO/TD-No. 1274

    Google Scholar 

  • S. Wilbert, S. Kleindiek, B. Nouri, N. Geuder, A. Habte, M. Schwandt, F. Vignola: Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error, AIP Conf. Proc. 1734, 150009 (2016)

    Google Scholar 

  • D. Schüler, S. Wilbert, N. Geuder, R. Affolter, F. Wolfertstetter, C. Prahl, M. Röger, M. Schroedter-Homscheidt, G. Abdellatif, A. Allah Guizani, M. Balghouthi, A. Khalil, A. Mezrhab, A. Al-Salaymeh, N. Yassaa, F. Chellali, D. Draou, P. Blanc, J. Dubranna, O.M.K. Sabry: The enerMENA meteorological network – Solar radiation measurements in the MENA region, AIP Conf. Proc. 1734, 150008 (2016)

    Google Scholar 

  • J. Badosa, J. Wood, P. Blanc, C.N. Long, L. Vuilleumier, D. Demengel, M. Haeffelin: Solar irradiances measured using SPN1 radiometers: Uncertainties and clues for development, Atmos. Meas. Tech. 7(12), 4267–4283 (2014)

    Google Scholar 

  • S. Schrott, T. Schmidt, T. Hornung, P. Nitz: Scientific system for high-resolution measurement of the circumsolar radiation, AIP Conf. Proc. 1616, 88–91 (2014)

    Google Scholar 

  • S. Wilbert, B. Reinhardt, J. DeVore, M. Röger, R. Pitz-Paal, C. Gueymard, R. Buras: Measurement of solar radiance profiles with the Sun and aureole measurement system, J. Sol. Energy Eng. 135, 041002 (2013)

    Google Scholar 

  • S. Wilbert, R. Pitz-Paal, J. Jaus: Comparison of measurement techniques for the determination of circumsolar irradiance, AIP Conf. Proc. 1556, 162–167 (2013)

    Google Scholar 

  • S. Wilbert, M. Röger, J. Csambor, M. Breitbach, F. Klinger, B. Nouri, N. Hanrieder, F. Wolfertstetter, D. Schüler, S. Shaswattam, N. Goswami, S. Kumar, A. Ghennioui, R. Affolter, N. Geuder, B. Kraas: Sunshape measurements with conventional rotating shadowband irradiometers, AIP Conf. Proc. 2033, 190016 (2018)

    Google Scholar 

  • L. Harrison, J. Michalsky, J. Berndt: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements, Appl. Opt. 33, 5118–5125 (1994)

    Google Scholar 

  • V. Tatsiankou, K. Hinzer, H. Schriemer, S. Kazadzis, N. Kouremeti, J. Gröbner, R. Beal: Extensive validation of solar spectral irradiance meters at the World Radiation Center, Sol. Energy 166, 80–89 (2018)

    Google Scholar 

  • ISO 28902-1:2012: Air Quality – Environmental Meteorology – Part 1: Ground-Based Remote Sensing of Visual Range by Lidar (ISO, Geneva 2012)

    Google Scholar 

  • N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, J. Polo: Atmospheric extinction in solar tower plants: Absorption and broadband correction for MOR measurements, Atmos. Meas. Tech. 8, 3467–3480 (2015)

    Google Scholar 

  • T. Sarver, A. Al-Qaraghuli, L.L. Kazmerski: A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches, Renew. Sustain. Energy Rev. 22, 698–733 (2013)

    Google Scholar 

  • F. Wolfertstetter, K. Pottler, N. Geuder, R. Affolter, A.A. Merrouni, A. Mezrhab, R. Pitz-Paal: Monitoring of mirror and sensor soiling with TraCS for improved quality of ground based irradiance measurements, Energy Procedia 49, 2422–2432 (2014)

    Google Scholar 

  • P. Kuhn, M. Wirtz, N. Killius, S. Wilbert, J.L. Bosch, N. Hanrieder, B. Nouri, J. Kleissl, L. Ramirez, M. Schroedter-Homscheidt, D. Heinemann, A. Kazantzidis, P. Blanc, R. Pitz-Paal: Benchmarking three low-cost, low-maintenance cloud height measurement systems and ECMWF cloud heights against a ceilometer, Sol. Energy 168, 140–152 (2018)

    Google Scholar 

  • J. Polo, S. Wilbert, J.A. Ruiz-Arias, R. Meyer, C. Gueymard, M. Suri, L. Martin, T. Mieslinger, P. Blanc, I. Grant, J. Boland, P. Ineichen, J. Remund, R. Escobar, A. Troccoli, M. Sengupta, K.P. Nielsen, D. Renne, N. Geuder, T. Cebecauer: Preliminary survey on site-adaption techniques for satellite-derived and reanalysis solar radiation datasets, Sol. Energy 132, 25–37 (2016)

    Google Scholar 

  • B. Reinhardt, R. Buras, L. Bugliaro, S. Wilbert, B. Mayer: Determination of circumsolar radiation from Meteosat Second Generation, Atmos. Meas. Tech. 7, 823–838 (2014)

    Google Scholar 

  • R. Mueller, T. Behrendt, A. Hammer, A. Kemper: A new algorithm for the satellite-based retrieval of solar surface irradiance in spectral bands, Remote Sens. Environ. 4, 622–647 (2012)

    Google Scholar 

  • T. Huld, A.G. Amillo: Estimating PV module performance over large geographical regions: The role of irradiance, air temperature, wind speed and solar spectrum, Energies 8, 5159–5181 (2015)

    Google Scholar 

  • ISO 17713-1: Meteorology – Wind Measurements – Part 1: Wind Tunnel Test Methods for Rotating Anemometer Performance (ISO, Geneva 2007)

    Google Scholar 

  • ISO 16622: Meteorology – Sonic Anemometers/Thermometers – Acceptance Test Methods for Mean Wind Measurements (ISO, Geneva 2003)

    Google Scholar 

  • N. Geuder, F. Wolfertstetter, S. Wilbert, D. Schüler, R. Affolter, B. Kraas, E. Lüpfert, B. Espinar: Screening and flagging of solar irradiation and ancillary meteorological data, Energy Procedia 69, 1989–1998 (2015)

    Google Scholar 

  • J.-J. Trujillo, F. Bingöl, G.C. Larsen, J. Mann, M. Kühn: Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning, Wind Energy 14, 61–75 (2011)

    Google Scholar 

  • ISO 9060:2018: Solar Energy – Specification and Classification of Instruments for Measuring Hemispherical Solar and Direct Solar Radiation (ISO, Geneva 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Emeis, S., Wilbert, S. (2021). Measurement Systems for Wind, Solar and Hydro Power Applications. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_51

Download citation

Publish with us

Policies and ethics