Skip to main content

Abstract

This chapter follows the tradition of classical textbooks on meteorology and presents relevant parameters for meteorology, including measurements in dry and moist air, water, and soil, as well as cloud physical quantities. Tables present the pressure, temperature, and humidity dependency of these parameters. Furthermore, soil physical quantities and calculation procedures are presented to calculate parameters of the solar and Earth system and of the time system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G. Fischer (Ed.): Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group V: Geophysics and Space Research, Volume 4: Meteorology (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  • S.N. Mikhailenko, Y.L. Babikov, V.F. Golovko: Information-calculating system spectroscopy of atmospheric gases. The structure and main functions, Atmos. Ocean. Opt. 18, 685–695 (2005)

    Google Scholar 

  • K. Schneider-Carius: Geschichtlicher Überblick über die Entwicklung der Meteorologie. In: Meteorologisches Taschenbuch, 2nd edn., Vol. 1, ed. by F. Linke, F. Baur (Akademische Verlagsges. Geest and Portig K.-G., Leipzig 1962) pp. 662–708

    Google Scholar 

  • A. Guyot: A Collection of Meteorological Tables: With Other Tables Useful in Practical Meteorology (Smithonian Institution, Washington 1852), (Reprint 2012 by Forgotten Books)

    Google Scholar 

  • F. Linke (Ed.): Meteorologisches Taschenbuch, Vol. 1–5 (Akademische Verlagsanstalt m. b. H., Leipzig 1939), 1931–1939

    Google Scholar 

  • F. Linke, F. Baur (Eds.): Meteorologisches Taschenbuch, Vol. I, 2nd edn. (Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig 1962)

    Google Scholar 

  • F. Linke, F. Baur (Eds.): Meteorologisches Taschenbuch, Vol. II, 2nd edn. (Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig 1970)

    Google Scholar 

  • F. Linke, F. Baur (Eds.): Linkes meteorologisches Taschenbuch, Vol. III (Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig 1957)

    Google Scholar 

  • S. Letestu (Ed.): International Meteorological Tables, WMO No. 188, Tp 94, Updated 1973 (World Meteorological Organization, Geneva 1966)

    Google Scholar 

  • J. Bartels, P. ten Bruggencate (Eds.): Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, Astronomy and Geophysics (Springer, Berlin, Heidelberg 1952)

    Google Scholar 

  • CODATA: Recommended Consistent Values of the Fundamental Physical Constants, CODATA Bulletin, Vol. 11 (Council of Scientific Unions—Committee on Data for Science and Technology, Paris 1973)

    Google Scholar 

  • Comité International des Poids et Mesures: The International Practical Temperature Scale of 1968, Metrologia 5, 35 (1969)

    Article  Google Scholar 

  • D. Sonntag: Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae, Z. Meteorol. 40, 340–344 (1990)

    Google Scholar 

  • CODATA: The 1986 Adjustment of the Fundamental Physical Constants (Report of the Codata Task Group on Fundamental Constants), CODATA Bulletin, Vol. 63 (Council of Scientific Unions—Committee on Data for Science and Technology, Paris 1986)

    Google Scholar 

  • E.R. Cohen, B.N. Taylor: The 1986 Adjustment of the Fundamental Physical Constants, CODATA-Bull., Vol. 63 (International Council of Scientific Unions (ICSU), Committee on Data for Science and Technology (CODATA), Paris 1986) p. 36

    Google Scholar 

  • H. Preston-Thomas: The International Temperature Scale of 1990 (ITS-90), Metrologia 27, 3–10 (1990)

    Article  Google Scholar 

  • R. Feistel, D.G. Wright, D.R. Jackett, K. Miyagawa, J.H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – part 1: background and equations, Ocean Sci. 6, 633–677 (2010)

    Article  Google Scholar 

  • D.G. Wright, R. Feistel, J.H. Reissmann, K. Miyagawa, D.R. Jackett, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – part 2: the library routines, Ocean Sci. 6, 695–718 (2010)

    Article  Google Scholar 

  • IOC, SCOR, IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation and Use of Thermodynamic Properties, Manuals and Guides, Vol. 56 (UNESCO, 2010)

    Google Scholar 

  • R. Feistel: TEOS-10: a new international oceanographic standard for seawater, ice, fluid water, and humid air, Int. J. Thermophys. 33, 1335–1351 (2012)

    Article  Google Scholar 

  • R. Feistel: Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond, Ocean Sci. 14, 471–502 (2018)

    Article  Google Scholar 

  • W. Wagner, A. Pruß: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  Google Scholar 

  • IAPWS R6-95: Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (International Association for the Properties of Water and Steam, Dresden 2016)

    Google Scholar 

  • R. Feistel, W. Wagner: A new equation of state for H2O ice Ih, J. Phys. Chem. Ref. Data 35, 1021–1047 (2006)

    Article  Google Scholar 

  • IAPWS R10-06: Revised Release on the Equation of State 2006 for H2O Ice Ih (International Association for the Properties of Water and Steam, Doorwerth 2009)

    Google Scholar 

  • R. Feistel: A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr. 58, 43–114 (2003)

    Article  Google Scholar 

  • R. Feistel: A Gibbs function for seawater thermodynamics for −6 to 80 °C and salinity up to 120 g kg−1, Deep Sea Res. I: Oceanogr. Res. Pap. 55, 1639–1671 (2008)

    Article  Google Scholar 

  • IAPWS R13-08: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater (International Association for the Properties of Water and Steam, Berlin 2008)

    Google Scholar 

  • E.W. Lemmon, R.T. Jacobsen, S.G. Penoncello, D.G. Friend: Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa, J. Phys. Chem. Ref. Data 29, 331–385 (2000)

    Article  Google Scholar 

  • R.W. Hyland, A. Wexler: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K, ASHRAE Transactions 89, 500–519 (1983)

    Google Scholar 

  • A.H. Harvey, P.H. Huang: First-principles calculation of the air–water second virial coefficient, Int. J. Thermophys. 28, 556–565 (2007)

    Article  Google Scholar 

  • R. Feistel, D.G. Wright, H.J. Kretzschmar, E. Hagen, S. Herrmann, R. Span: Thermodynamic properties of sea air, Ocean Sci. 6, 91–141 (2010)

    Article  Google Scholar 

  • D.M. Murphy, T. Koop: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Quart. J. Roy. Meteorol. Soc. 131, 1539–1565 (2005)

    Article  Google Scholar 

  • V. Holten, J.V. Sengers, M.A. Anisimov: Equation of state for supercooled water at pressures up to 400 MPa, J. Phys. Chem. Ref. Data 43, 043101 (2014)

    Article  Google Scholar 

  • SI: Le Système International D’unités (the International System of Units), 9th edn. (Bureau International des Poids et Mesures, Sèvres 2019)

    Google Scholar 

  • B.N. Taylor, A. Thompson (Eds.): The International System of Units (SI), NIST Special Publication, Vol. 330, 2008th edn. (National Institute of Standards and Technology, Gaithersburg 2008)

    Google Scholar 

  • P.J. Allisy-Roberts: Radiation quantities and units—understanding the Sievert, J. Radiol. Prot. 25, 97 (2005)

    Article  Google Scholar 

  • M.L. Salby: Physics of the Atmosphere and Climate (Cambridge University Press, Cambridge 2012)

    Book  Google Scholar 

  • D.W. Moore: Dynamical meteorology | Coriolis force. In: Encyclopedia of Atmospheric Sciences, 2nd edn., ed. by G.R. North, J. Pyle, F. Zhang (Academic Press, Oxford 2015) pp. 313–316

    Chapter  Google Scholar 

  • H. Moritz: Geodetic Reference System 1980, Paper presented at XVII General Assembly of the IUGG, (IUGG, Canberra 1980)

    Google Scholar 

  • G. Kopp, J.L. Lean: A new, lower value of total solar Irradiance: evidence and climate significance, Geophys. Res. Letters 38, L01706 (2011)

    Article  Google Scholar 

  • P.T. Tsilingiris: Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C, Energy Convers. Manag. 49, 1098–1110 (2008)

    Article  Google Scholar 

  • ICAO: Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres (262500 Feet), ICAO Doc 7488, 3rd edn. (International Civil Aviation Organization, Montréal 1993)

    Google Scholar 

  • T.S. Glickman (Ed.): Glossary of Meteorology, 2nd edn. (Am. Meteorol. Soc., Boston, MA 2000)

    Google Scholar 

  • M. Hantel: Einführung Theoretische Meteorologie (Springer Spektrum, Berlin, Heidelberg 2013)

    Book  Google Scholar 

  • NOAA: U.S. Standard Atmosphere, 1976 (National Oceanic and Atmospheric Administration, Washington D.C. 1976)

    Google Scholar 

  • O. Hellmuth, R. Feistel, T. Foken: Intercomparison of different state-of-the-art formulations of the mass density of humid air, Bull. Atmos. Sci. Technol. 3, in press (2022), https://doi.org/10.1007/s42865-021-00036-7https://doi.org/10.1007/s42865-021-00036-7

  • W. Henry: Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Phil. Trans. R. Soc. London 93, 29–276 (1803)

    Article  Google Scholar 

  • R. Sander: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys. 15, 4399–4981 (2015)

    Article  Google Scholar 

  • R. Feistel, W. Ebeling: Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim 2011)

    Book  Google Scholar 

  • R. Feistel, O. Hellmuth: Zur Rolle des Wassers in der Energiebilanz des Klimasystems (On the role of water in the energy balance of the climate system), Sitzungsberichte der Leibniz-Sozietät der Wissenschaften zu Berlin, 144, 51−130 (2020)

    Google Scholar 

  • R. Feistel, J.W. Lovell-Smith: Defining relative humidity in terms of water activity. Part 1: definition, Metrologia 54, 566 (2017)

    Article  Google Scholar 

  • WMO: Guide to Instruments and Methods of Observation, WMO-No. 8, Volume I - Measurement of Meteorological Variables (World Meteorological Organization, Geneva 2018)

    Google Scholar 

  • R. Feistel, J.W. Lovell-Smith, O. Hellmuth: Virial approximation of the TEOS-10 equation for the fugacity of water in humid air, Int. J. Thermophys. 36, 44–68 (2015)

    Article  Google Scholar 

  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. (Prentice Hall, Upper Saddle River 1999)

    Google Scholar 

  • IAPWS G7-04: Guideline on the Henry's Constant and Vapour-Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures (International Association for the Properties of Water and Steam, Kyoto 2004)

    Google Scholar 

  • S. Herrmann, H.-J. Kretzschmar, D.P. Gatley: Thermodynamic properties of real moist air, dry air, steam, water, and ice (RP 1485), HVAC and R Research 15, 961–986 (2009)

    Article  Google Scholar 

  • E.W. Lemmon, R.T. Jacobsen: Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air, Int. J. Thermophys. 25, 21–69 (2004)

    Article  Google Scholar 

  • G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metalllösungen, Ann. Phys. 25(4), 377–445 (1908)

    Article  Google Scholar 

  • K.N. Liou: An Introduction to Atmospheric Radiation (Academic Press, Amsterdam, Boston, London 2002)

    Google Scholar 

  • Y.X. Hu, K. Stamnes: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate 6, 728–742 (1993)

    Article  Google Scholar 

  • Q. Fu, K.N. Liou: Parameterization of radiative properties of cirrus clouds, J. Atmos. Sci. 50, 2008–2025 (1993)

    Article  Google Scholar 

  • J.W. Ramsey, H.D. Chiang, R.J. Goldstein: A study of the incoming longwave atmospheric radiation from a clear sky, J. Appl. Meteorol. 21, 566–578 (1982)

    Article  Google Scholar 

  • L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner: The HITRAN2012 molecular spectroscopic database, J. Quantit. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  Google Scholar 

  • D. Hillel: Environmental Soil Physics (Academic Press, New York 1998)

    Google Scholar 

  • H.-P. Blume, G.W. Brümmer, H. Fleige, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, B.-M. Wilke: Scheffer/Schachtschabel Soil Science (Springer, Berlin, Heidelberg 2016)

    Book  Google Scholar 

  • W. Eckelmann, H. Sponagel, W. Grottenthaler, K.-J. Hartmann, R. Hartwich, P. Janetzko, H. Joisten, D. Kühn, K.J. Sabel, R. Traidl: Bodenkundliche Kartieranleitung, 5th edn. (Ad-hoc AG Boden, Bundesanstalt für Geowissenschaften und Rohstoffe und Niedersächsisches Landesamt für Bodenforschung, in Kommission. E. Schweizerbart, Stuttgart 2005)

    Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna 2016)

    Google Scholar 

  • J. Moeys: The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring Soil Texture Data, online tutorial in [5.65] 2015)

    Google Scholar 

  • J. Moeys, W. Shangguan, R. Petzold, B. Minasny, B. Rosca, N. Jelinski, W. Zelazny, R. Marcondes Silva Souza Safanelli Caten, J.L. Safanelli, A. ten Caten: Soiltexture-Package – for Soil Texture Plot, Classification and Transformation, online tutorial in [5.65] 2018)

    Google Scholar 

  • M.T. van Genuchten: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • D.A. de Vries: Thermal properties of soils. In: Physics of the Plant Environment, ed. by W.R. van Wijk (North-Holland Publ. Co, Amsterdam 1963) pp. 210–235

    Google Scholar 

  • K.M. Smits, T. Sakaki, A. Limsuwat, T.H. Illangasekare: Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles, Vadose Zone J. 9, 172–180 (2010)

    Article  Google Scholar 

  • J.A. O’Donnell, V.E. Romanovsky, J.W. Harden, A.D. McGuire: The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska, Soil Sci. 174, 646–651 (2009)

    Article  Google Scholar 

  • R. Lee: Forest Microclimatology (Columbia Univ. Press, New York 1978)

    Google Scholar 

  • A.F. Moene, J.C. van Dam: Transport in the Atmosphere-Vegetation-Soil Continuum (Cambridge Univ. Press, Cambridge 2014)

    Book  Google Scholar 

  • M.G. Schaap, F.J. Leij, M.T. van Genuchten: Neural network analysis for hierarchical prediction of soil hydraulic properties, Soil Sci. Soc. Am. J. 62, 847–855 (1998)

    Article  Google Scholar 

  • H. Karttunen, P. Kröger, H. Oja, M. Poutanen, K.J. Donner (Eds.): Fundamental Astronomy (Springer, Berlin, Heidelberg 2017)

    Google Scholar 

  • VDI: Umweltmeteorologie – Meteorologische Messungen – Grundlagen (Environmental Meteorology – Meteorological Measurements – Basics), VDI 3786, Blatt (Part) 1 (Beuth-Verlag, Berlin 2013)

    Google Scholar 

  • T. Foken: Micrometeorology, 2nd edn. (Springer, Berlin, Heidelberg 2017)

    Book  Google Scholar 

  • D. Sonntag: Formeln verschiedenen Genauigkeitsgrades zur Berechnung der Sonnenkoordinaten, Abh. Meteorol. Dienstes DDR 143, 104 (1989)

    Google Scholar 

  • VDI: Umweltmeteorologie – Wechselwirkungen zwischen Atmosphäre und Oberflächen-Berechnung der spektralen kurz- und der langwelligen Strahlung, VDI 3789 (Beuth-Verlag, Berlin 2018)

    Google Scholar 

  • NOAA Earth System Reserch Laboratory (ESRL): Day-Of-Year Calender, https://www.esrl.noaa.gov/gmd/grad/neubrew/Calendar.jsp, Accessed 06 July 2021

  • K.N. Liou: Radiation and Cloud Processes in the Atmosphere (Oxford University Press, Oxford 1992)

    Google Scholar 

  • D.W. Hughes, B.D. Yallop, C.Y. Hohenkerk: The equation of time, Monthly Notices Roy. Astron. Soc. 238, 1529–1535 (1989)

    Article  Google Scholar 

  • D.L. Hartmann: Global Physical Climatology (Academic Press, San Diego, New York 1994)

    Google Scholar 

  • R. Feistel, R. Wielgosz, S.A. Bell, M.F. Camoes, J.R. Cooper, P. Dexter, A.G. Dickson, P. Fisicaro, A.H. Harvey, M. Heinonen, O. Hellmuth, H.J. Kretzschmar, J.W. Lovell-Smith, T.J. McDougall, R. Pawlowicz, P. Ridout, S. Seitz, P. Spitzer, D. Stoica, H. Wolf: Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview, Metrologia 53, R1–R11 (2016)

    Article  Google Scholar 

  • J.W. Lovell-Smith, R. Feistel, A.H. Harvey, O. Hellmuth, S.A. Bell, M. Heinonen, J.R. Cooper: Metrological challenges for measurements of key climatological observables. Part 4: Atmospheric relative humidity, Metrologia 53, R40–R59 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Rainer Feistel for helpful discussions and his support in the application of the TEOS-10 SIA library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

1 Supplementary Material to Book Chapter

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Foken, T., Hellmuth, O., Huwe, B., Sonntag, D. (2021). Physical Quantities. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_5

Download citation

Publish with us

Policies and ethics