Skip to main content

Abstract

Ground-based radar systems have been used to observe clouds and precipitation since the 1940s. While weather radars that use centimeter waves can observe precipitation several hundred kilometers away, radars that are dedicated to cloud observations use millimeter waves and have limited ranges of just a few tens of kilometers. Airborne radars have the advantages that they can perform measurements close to the region of interest and they provide radar information on regions that ground-based radars cannot access. There is no such thing as a standard airborne radar system; all systems are tailored for use on specific research aircraft, although some of them are designed to be modular so that they can be mounted on various aircraft. Airborne radar systems use frequencies ranging from those in the X band to those in the W band. Radars that use shorter wavelengths are preferred due to spatial restrictions on antenna size in aircraft, but C-band systems are also being considered for installation in large aircraft. Besides reflectivity (the backscatter signal), the radial motions of scattering particles can be measured and used to retrieve atmospheric motion. In addition, several airborne radars are able to measure dual-polarization backscatter signals that can be employed to identify different types of hydrometeors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.-L. Brenguier, W.D. Bachalo, P.Y. Chuang, B.M. Esposito, J. Fugal, T. Garrett, J.-F. Gayet, H. Gerber, A. Heymsfield, A. Kokhanovsky, A. Korolev, R.P. Lawson, D.C. Rogers, R.A. Shaw, W. Strapp, M. Wendisch: In situ measurements of cloud and precipitation particles. In: Airborne Measurements for Environmental Research: Methods and Instruments, ed. by M. Wendisch, J.-L. Brenguier (Wiley-VCH, Weinheim 2013) pp. 457–526, Chap. 5

    Google Scholar 

  • R.M. Rauber, S.W. Nesbitt: Radar Meteorology: A First Course (Wiley, Chichester 2018)

    Book  Google Scholar 

  • V.N. Bringi, V. Chandrasekar: Polarimetric Doppler Weather Radar (Cambridge Univ. Press, Cambridge 2001)

    Book  Google Scholar 

  • M. Wendisch, J.-L. Brenguier (Eds.): Airborne Measurements for Environmental Research: Methods and Instruments (Wiley-VCH, Weinheim 2013)

    Google Scholar 

  • J. Pelon, G. Vali, G. Ancellet, G. Ehret, P.H. Flamant, S. Haimov, G. Heymsfield, D. Leon, J.B. Mead, A.L. Pazmany, A. Protat, Z. Wang, M. Wolde: Lidar and radar observations. In: Airborne Measurements for Environmental Research: Methods and Instruments, ed. by M. Wendisch, J.-L. Brenguier (Wiley-VCH, Weinheim 2013) pp. 457–526, Chap. 9

    Chapter  Google Scholar 

  • M. Skolnik: Radar Handbook, 3rd edn. (McGraw-Hill, New York 2008)

    Google Scholar 

  • P.H. Hildebrand, R.S. Sekhon: Objective determination of the noise level in Doppler spectra, J. Appl. Meteorol. 13(7), 808–811 (1974)

    Article  Google Scholar 

  • P.G. Black, H.V. Senn, C.L. Courtright: Airborne radar observations of eye configuration changes, bright band distribution, precipitation tilt during the 1969 multiple seeding experiments in hurricane Debbie, Mon. Weather Rev. 100(3), 208–217 (1972)

    Article  Google Scholar 

  • R.M. Lhermitte: Probing of atmospheric motion by airborne pulse-Doppler radar techniques, J. Appl. Meteorol. 10(2), 234–246 (1971)

    Article  Google Scholar 

  • P.H. Hildebrand, R.K. Moore: Meteorological radar observations from mobile platforms. In: Radar in Meteorology, ed. by D. Atlas (AMS, Boston 1990) pp. 287–315, Chap. 22a

    Chapter  Google Scholar 

  • D.P. Jorgensen, R. Meneghini: Airborne/spaceborne radar: Panel report. In: Radar in Meteorology, ed. by D. Atlas (AMS, Boston 1990) pp. 315–322, Chap. 22b

    Chapter  Google Scholar 

  • A. Pazmany, R.E. McIntosh, R.D. Kelly, G. Vali: An airborne 95 GHz dual polarized radar for cloud studies, IEEE Trans. Geosci. Remote Sens. 32(4), 731–739 (1994)

    Article  Google Scholar 

  • G. Vali, R.D. Kelly, A. Pazmany, R.E. McIntosh: Airborne radar and in-situ observations of a shallow stratus with drizzle, Atmos. Res. 38(1–4), 361–380 (1995)

    Article  Google Scholar 

  • J. French, G. Vali, R.D. Kelly: Evolution of small cumulus clouds in Florida: Observations of pulsating growth, Atmos. Res. 52(1/2), 143–165 (1999)

    Article  Google Scholar 

  • J. French, G. Vali, R.D. Kelly: Observations of microphysics, pertaining to the development of drizzle in warm, shallow cumulus clouds, Q. J. R. Meteorol. Soc. 126(563), 415–443 (1994)

    Article  Google Scholar 

  • P.H. Hildebrand, C.A. Walther, C.L. Frush, J. Testud, F. Baudin: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests, Proc. IEEE 82(12), 1873–1890 (1994)

    Article  Google Scholar 

  • P.H. Hildebrand, W.-C. Lee, C.A. Walther, C. Frush, M. Randall, E. Loew, R. Neitzel, R. Parsons, J. Testud, F. Baudin, A. LeCornec: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE, Bull. Am. Meteorol. Soc. 77(2), 213–232 (1996)

    Article  Google Scholar 

  • G.M. Heymsfield, S.W. Bidwell, I.J. Caylor, S. Ameen, S. Nicholson, W. Boncyk, L. Miller, D. Vandemark, P.E. Racette, L.R. Dod: The EDOP radar system on the high-altitude NASA ER-2 aircraft, J. Atmos. Ocean. Technol. 13(4), 795–780 (1996)

    Article  Google Scholar 

  • G.M. Heymsfield, J.B. Halverson, J. Simpson, L. Tian, T. Paul Bui: ER-2 Doppler radar investigations of the eyewall of hurricane Bonnie during the Convection and Moisture Experiment-3, J. Appl. Meteorol. 40(8), 1310–1330 (2001)

    Article  Google Scholar 

  • L. Li, G.M. Heymsfield, P.E. Racette, L. Tian, E. Zenker: A 94 GHz cloud radar system on a NASA high-altitude ER-2 aircraft, J. Atmos. Ocean. Technol. 21(9), 1378–1388 (2003)

    Article  Google Scholar 

  • L. Li, G.M. Heymsfield, L. Tian, P.E. Racette: Measurements of ocean surface backscattering using an airborne 94-GHz cloud radar – Implication for calibration of airborne and spaceborne W-band radars, J. Atmos. Ocean. Technol. 22(7), 1033–1045 (2005)

    Article  Google Scholar 

  • L. Tian, G.M. Heymsfield, L. Li, R.C. Srivastava: Properties of light stratiform rain derived from 10 and 94 GHz airborne Doppler radar measurements, J. Geophys. Res. 112(D11), D11211 (2007)

    Article  Google Scholar 

  • M. Grecu, L. Tian, G.M. Heymsfield, A. Tokay, W.S. Olson, A.J. Heymsfield, A. Bansemer: Nonparametric methodology to estimate precipitating ice from multiple-frequency radar reflectivity observations, J. Appl. Meteorol. Climatol. 57(11), 2605–2622 (2018)

    Article  Google Scholar 

  • L. Li, G. Heymsfield, J. Carswell, D.H. Schaubert, M.L. McLinden, J. Creticos, M. Perrine, M. Coon, J.I. Cervantes, M. Vega, S. Guimond, L. Tian, A. Emory: The NASA high-altitude imaging wind and rain airborne profiler (HIWRAP), IEEE Trans. Geosci. Remote Sens. 54(1), 298–310 (2015)

    Article  Google Scholar 

  • S.R. Guimond, L. Tian, G.M. Heymsfield, S.J. Frasier: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes, J. Atmos. Ocean. Technol. 31(6), 1189–1215 (2014)

    Article  Google Scholar 

  • A. Battaglia, C.D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, G.W. Petty: G band atmospheric radars: New frontiers in cloud physics, Atmos. Meas. Tech. 7(6), 1527–1546 (2014)

    Article  Google Scholar 

  • J.S. Marshall, W.M. Palmer: The distribution of raindrops with size, J. Meteorol. 5, 165–166 (1948)

    Article  Google Scholar 

  • A. Battaglia, M.O. Ajewole, C. Simmer: Multiple scattering effects due to hydrometeors on precipitation radar systems, Geophys. Res. Lett. 32(19), L19801 (2005)

    Article  Google Scholar 

  • A. Battaglia, M.O. Ajewole, C. Simmer: Evaluation of radar multiple scattering effects in Cloudsat configuration, Atmos. Chem. Phys. 7(7), 1719–1730 (2007)

    Article  Google Scholar 

  • A. Battaglia, K. Mroz, T. Lang, F. Tridon, S. Tanelli, L. Tian, G.M. Heymsfield: Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores, J. Geophys. Res. Atmos. 121(16), 9356–9381 (2016)

    Article  Google Scholar 

  • P. Kollias, E.E. Clothiaux, M.A. Miller, B.A. Albrecht, G.L. Stephens, T.P. Ackerman: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research, Bull. Am. Meteorol. Soc. 88(10), 1608–1624 (2007)

    Article  Google Scholar 

  • A.Y. Hou, R.K. Kakar, S. Neeck, A.A. Azarbarzin, C.D. Kummerow, M. Kojima, R. Oki, K. Nakamura, T. Iguchi: The global precipitation measurement mission, Bull. Am. Meteorol. Soc. 95(5), 701–722 (2014)

    Article  Google Scholar 

  • G. Skofronick-Jackson, W.A. Petersen, W. Berg, C. Kidd, E.F. Stocker, D.B. Kirschbaum, R. Kakar, S.A. Braun, G.J. Huffman, T. Iguchi, P.E. Kirstetter, C. Kummerow, R. Meneghini, R. Oki, W.S. Olson, Y.N. Takayabu, K. Furukawa, T. Wilheit: The global precipitation measurement (GPM) mission for science and society, Bull. Am. Meteorol. Soc. 98(8), 1679–1695 (2017)

    Article  Google Scholar 

  • S.Y. Matrosov: A dual-wavelength radar method to measure snowfall rate, J. Appl. Meteorol. 37(11), 1510–1521 (1998)

    Article  Google Scholar 

  • S. Kneifel, M.S. Kulie, R. Bennartz: A triple-frequency approach to retrieve microphysical snowfall parameters, J. Geophys. Res. 116(D11), D11203 (2011)

    Article  Google Scholar 

  • A.L. Pazmany, S.J. Haimov: Coherent power measurements with a compact airborne Ka-band precipitation radar, J. Atmos. Ocean. Technol. 35(1), 3–20 (2018)

    Article  Google Scholar 

  • A.L. Pazmany, J.B. Mead: Millimeter-wave solid-state cloud and precipitation radars and signal processing. In: IEEE Radar Conf., Oklahoma (2018) pp. 0104–0109

    Google Scholar 

  • S. Haimov, A. Rodi: Fixed-antenna pointing-angle calibration of airborne Doppler cloud radar, J. Atmos. Ocean. Technol. 30(10), 2320–2335 (2013)

    Article  Google Scholar 

  • P.W. Sloss, D. Atlas: Wind shear and reflectivity gradient effects on Doppler radar spectra, J. Atmos. Sci. 25(6), 1080–1089 (1968)

    Article  Google Scholar 

  • P. Kollias, B.A. Albrecht, F. Marks Jr.: Why Mie?, Bull. Am. Meteorol. Soc. 83(10), 1471–1484 (2002)

    Article  Google Scholar 

  • R. Damiani, S. Haimov: A high-resolution dual-Doppler technique for fixed multiantenna airborne radar, IEEE Trans. Geosci. Remote Sens. 44(12), 3475–3489 (2006)

    Article  Google Scholar 

  • O. Bousquet, J. Delanoë, S. Bielli: Evaluation of 3D wind observations inferred from the analysis of airborne and ground-based radars during HyMeX SOP-1, Q. J. R. Meteorol. Soc. 142(S1), 86–94 (2016)

    Article  Google Scholar 

  • J.R. French, S.J. Haimov, L.D. Oolman, V. Grubišić, S. Serafin, L. Strauss: Wave-induced boundary-layer separation in the lee of the Medicine Bow Mountains. Part I: Observations, J. Atmos. Sci. 72(12), 4845–4863 (2015)

    Article  Google Scholar 

  • B. Geerts, Y. Yang, R. Rasmussen, S. Haimov, B. Pokharel: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data, Mon. Weather Rev. 143(2), 644–665 (2015)

    Article  Google Scholar 

  • D.E. Kingsmill, P.O.G. Persson, S. Haimov, M.D. Shupe: Mountain waves and orographic precipitation in a northern Colorado winter storm, Q. J. R. Meteorol. Soc. 142(695), 836–853 (2015)

    Article  Google Scholar 

  • L. Strauss, S. Serafin, S. Haimov, V. Grubišić: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements, Q. J. R. Meteorol. Soc. 141(693), 3207–3225 (2015)

    Article  Google Scholar 

  • R. Damiani, G. Vali, S. Haimov: The structure of thermals in cumulus from airborne dual-Doppler radar observations, J. Atmos. Sci. 63(5), 1432–1449 (2006)

    Article  Google Scholar 

  • D.P. Jorgensen, P.H. Hildebrand, C.L. Frush: Feasibility test of an airborne pulse-Doppler meteorological radar, J. Clim. Appl. Meteorol. 22(5), 744–757 (1983)

    Article  Google Scholar 

  • P.H. Hildebrand, C.K. Mueller: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analyses of air motions, J. Atmos. Ocean. Technol. 2(3), 362–380 (1985)

    Article  Google Scholar 

  • D. Leon, G. Vali, M. Lothon: Dual-Doppler analysis in a single plane from an airborne platform, J. Atmos. Ocean. Technol. 23(1), 3–22 (2006)

    Article  Google Scholar 

  • O. Bousquet, A. Berne, J. Delanoë, Y. Dufournet, J.J. Gourley, J. Van-Baelen, C. Augros, L. Besson, B. Boudevillain, O. Caumont, E. Defer, J. Grazioli, D.J. Jorgensen, P.-E. Kirstetter, J.-F. Ribaud, J. Beck, G. Delrieu, V. Ducrocq, D. Scipion, A. Schwarzenboeck, J. Zwiebel: Multifrequency radar observations collected in southern France during HyMeX-SOP1, Bull. Am. Meteorol. Soc. 96(2), 267–282 (2015)

    Article  Google Scholar 

  • Z. Wang, J. French, G. Vali, P. Wechsler, S. Haimov, A. Rodi, M. Deng, D. Leon, J. Snider, L. Peng, A.L. Pazmany: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics, Bull. Am. Meteorol. Soc. 93(5), 653–668 (2012)

    Article  Google Scholar 

  • J. Vivekanandan, S. Ellis, P. Tsai, E. Loew, W.-C. Lee, J. Emmett, M. Dixon, C. Burghart, S. Rauenbuehler: A wing pod-based millimeter wavelength airborne cloud radar, Geosci. Instrum. Methods Data Syst. 4(2), 161–176 (2015)

    Article  Google Scholar 

  • E.E. Eloranta: High spectral resolution lidar. In: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, Vol. 102, ed. by C. Weitkamp (Springer, New York 2005) pp. 143–163, Chap. 5

    Google Scholar 

  • A. Protat, J. Pelon, N. Grand, P. Delville, P. Laborie, J.-P. Vinson, D. Bouniol, D. Bruneau, H. Chepfer, J. Delanoë, M. Haeffelin, V. Noël, C. Tinel: Le projet RALI – Combinaison d’un radar et d’un lidar pour l’étude des nuages faiblement précipitants, Météorologie 47, 23–33 (2004)

    Article  Google Scholar 

  • J. Delanoë, A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy, J.-F. Gayet, C. Jouan: Comparison of airborne in situ, airborne radar–lidar, and spaceborne radar–lidar retrievals of polar ice cloud properties sampled during the POLARCAT campaign, J. Atmos. Ocean. Technol. 30(1), 57–73 (2013)

    Article  Google Scholar 

  • M. Krautstrunk, A. Giez: The transition from FALCON to HALO era airborne atmospheric research. In: Atmospheric Physics. Research Topics in Aerospace, ed. by U. Schumann (Springer, Berlin, Heidelberg 2012) pp. 609–624

    Chapter  Google Scholar 

  • M. Mech, E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, B. Stevens: HAMP – The microwave package on the high altitude and long range research aircraft (HALO), Atmos. Meas. Tech. 7(12), 4539–4553 (2014)

    Article  Google Scholar 

  • F. Ewald, S. Groß, M. Hagen, L. Hirsch, J. Delanoë, M. Bauer-Pfundstein: Calibration of a 35 GHz airborne cloud radar: Lessons learned and intercomparisons with 94 GHz cloud radars, Atmos. Meas. Tech. 12(3), 1815–1839 (2019)

    Article  Google Scholar 

  • B. Stevens, F. Ament, S. Bony, S. Crewell, F. Ewald, S. Gross, A. Hansen, L. Hirsch, M. Jacob, T. Kölling, H. Konow, B. Mayer, M. Wendisch, M. Wirth, K. Wolf, S. Bakan, M. Bauer-Pfundstein, M. Brueck, J. Delanoë, A. Ehrlich, D. Farrell, M. Forde, F. Gödde, H. Grob, M. Hagen, E. Jäkel, F. Jansen, C. Klepp, M. Klingebiel, M. Mech, G. Peters, M. Rapp, A.A. Wing, T. Zinner: A high-altitude long-range aircraft configured as a cloud observatory – The NARVAL expeditions, Bull. Am. Meteorol. Soc. 100(6), 1061–1077 (2019)

    Article  Google Scholar 

  • A. Schäfler, G. Craig, H. Wernli, P. Arbogast, J.D. Doyle, R. McTaggart-Cowan, J. Methven, G. Rivière, F. Ament, M. Boettcher, M. Bramberger, Q. Cazenave, R. Cotton, S. Crewell, J. Delanoë, A. Dörnbrack, A. Ehrlich, F. Ewald, A. Fix, C.M. Grams, S.L. Gray, H. Grob, S. Groß, M. Hagen, B. Harvey, L. Hirsch, M. Jacob, T. Kölling, H. Konow, C. Lemmerz, O. Lux, L. Magnusson, B. Mayer, M. Mech, R. Moore, J. Pelon, J. Quinting, S. Rahm, M. Rapp, M. Rautenhaus, O. Reitebuch, C.A. Reynolds, H. Sodemann, T. Spengler, G. Vaughan, M. Wendisch, M. Wirth, B. Witschas, K. Wolf, T. Zinner: The North Atlantic Waveguide and Downstream Impact Experiment, Bull. Am. Meteorol. Soc. 99(8), 1607–1637 (2018)

    Article  Google Scholar 

  • M.L. Mclinden, J. Carswell, L. Li, G. Heymsfield, A. Emory, J.I. Cervantes, L. Tian: Utilizing versatile transmission waveforms to mitigate pulse compression range sidelobes with the HIWRAP radar, IEEE Geosci. Remote Sens. Lett. 10(6), 1365–1368 (2012)

    Article  Google Scholar 

  • I.J. Caylor, G.M. Heymsfield, R. Meneghini, L.S. Miller: Correction of sampling errors in ocean surface cross-sectional estimates from nadir-looking weather radar, J. Atmos. Ocean. Technol. 14(1), 203–210 (1997)

    Article  Google Scholar 

  • T. Hand, M. Cooley, G. Kempic, D. Sall, P. Stenger, S. Woodworth, R. Park, P.E. Racette, G. Heymsfield, L. Li: Dual-band shared aperture reflector/reflectarray antenna: Designs, technologies and demonstrations for NASA’s ACE radar. In: IEEE Int. Symp. Phased Array Syst. Technol., Waltham (2013) pp. 352–358

    Google Scholar 

  • S. Haimov, J. French, B. Geerts, Z. Wang, M. Deng, A. Rodi, A. Pazmany: Compact airborne Ka-band radar: A new edition to the University of Wyoming aircraft for atmospheric research. In: IEEE Int. Geosci. Remote Sens. Symp., Valencia (2018) pp. 897–900

    Google Scholar 

  • S.M. Sekelsky: Near-field reflectivity and antenna boresight gain corrections for millimeter-wave atmospheric radars, J. Atmos. Ocean. Technol. 19(4), 468–477 (2002)

    Article  Google Scholar 

  • I.J. Caylor, G.M. Heymsfield, S.W. Bidwell, S. Ameen: NASA ER-2 Doppler Radar Reflectivity Calibration for the CAMEX Project (Goddard Space Flight Center, Greenbelt 1994), NASA-TN-104611, https://ntrs.nasa.gov/search.jsp?R=19940033279, Accessed 19 July 2021

  • S.L. Durden, E. Im, F.K. Li, W. Ricketts, A. Tanner, W. Wilson: ARMAR: An airborne rain-mapping radar, J. Atmos. Ocean. Technol. 11(3), 727–737 (1994)

    Article  Google Scholar 

  • S. Tanelli, S.L. Durden, E. Im: Simultaneous measurements of ku- and ka-band sea surface cross sections by an airborne radar, IEEE Geosci. Remote Sens. Lett. 3(3), 359–363 (2006)

    Article  Google Scholar 

  • D. Bouniol, A. Protat, A. Plana-Fattori, M. Giraud, J.-P. Vinson, N. Grand: Comparison of airborne and spaceborne 95-GHz radar reflectivities and evaluation of multiple scattering effects in spaceborne measurements, J. Atmos. Ocean. Technol. 25(11), 1983–1995 (2008)

    Article  Google Scholar 

  • G.M. Heymsfield: Accuracy of vertical air motions from nadir-viewing Doppler airborne radars, J. Atmos. Ocean. Technol. 6(6), 1079–1082 (1989)

    Article  Google Scholar 

  • J. Testud, P.H. Hildebrand, W.-C. Lee: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the Earth’s surface, J. Atmos. Ocean. Technol. 12(4), 800–820 (1995)

    Article  Google Scholar 

  • J.F. Georgis, F. Roux, P.H. Hildebrand: Observation of precipitating systems over complex orography with meteorological Doppler radars: A feasibility study, Meteorol. Atmos. Phys. 72(2–4), 185–202 (2000)

    Article  Google Scholar 

  • B.L. Bosart, W.-C. Lee, R.M. Wakimoto: Procedures to improve the accuracy of airborne Doppler radar data, J. Atmos. Ocean. Technol. 19(3), 322–339 (2002)

    Article  Google Scholar 

  • H. Cai, W.-C. Lee, M.M. Bell, C.A. Wolff, X. Tang, F. Roux: A generalized navigation correction method for airborne Doppler radar data, J. Atmos. Ocean. Technol. 35(10), 1999–2017 (2018)

    Article  Google Scholar 

  • S. M. Ellis, P. Tsai, C. Burghart, U. Romatschke, M. Dixon, J. Vivekanandan, J. Emmett, E. Loew: Use of the Earth’s Surface as a Reference to Correct Airborne Nadir‐Looking Radar Radial Velocity Measurements for Plattform Motion, J. Atmos. Oceanic Technol. 36, 1343–1360 (2019)

    Google Scholar 

  • R.M. Rauber, S.M. Ellis, J. Vivekanandan, J. Stith, W.-C. Lee, G.M. McFarquhar, B.F. Jewett, A. Janiszeski: Finescale structure of a snowstorm over the northeastern United States: A first look at high-resolution HIAPER cloud radar observations, Bull. Am. Meteorol. Soc. 92(2), 253–269 (2017)

    Article  Google Scholar 

  • J.R. French, G. Vali, R.D. Kelly: Observations of microphysics pertaining to the development of drizzle in warm, shallow cumulus clouds, Q. J. R. Meteorol. Soc. 126(563), 415–443 (2000)

    Article  Google Scholar 

  • S. Lasher-Trapp, D.C. Leon, P.J. DeMott, C.M. Villanueva-Birriel, A.V. Johnson, D.H. Moser, C.S. Tully, W. Wu: A multisensor investigation of rime splintering in tropical maritime cumuli, J. Atmos. Sci. 73(6), 2547–2564 (2016)

    Article  Google Scholar 

  • R. Jackson, J.R. French, D.C. Leon, D.M. Plummer, S. Lasher-Trapp, A.M. Blyth, A. Korolev: Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom, Atmos. Chem. Phys. 18(20), 15329–15344 (2018)

    Article  Google Scholar 

  • J.W. Taylor, T.W. Choularton, A.M. Blyth, Z. Liu, K.N. Bower, J. Crosier, M.W. Gallagher, P.I. Williams, J.R. Dorsey, M.J. Flynn, L.J. Bennett, Y. Huang, J. French, A. Korolev, P.R.A. Brown: Observations of cloud microphysics and ice formation during COPE, Atmos. Chem. Phys. 16(2), 799–826 (2016)

    Article  Google Scholar 

  • R. Damiani, J. Zehnder, B. Geerts, J. Demko, S. Haimov, J. Petti, G.S. Poulos, A. Razdan, J. Hu, M. Leuthold, J. French: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006, Bull. Am. Meteorol. Soc. 89(1), 57–74 (2008)

    Article  Google Scholar 

  • R. Damiani, G. Vali, S. Haimov: The structure of thermals in cumulus from airborne dual-Doppler radar observations, J. Atmos. Sci. 63(5), 1432–1450 (2006)

    Article  Google Scholar 

  • R. Damiani, G. Vali: Evidence for tilted toroidal circulations in cumulus, J. Atmos. Sci. 64(6), 2045–2060 (2007)

    Article  Google Scholar 

  • Y. Wang, B. Geerts: Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations, J. Appl. Meteorol. Climatol. 54(10), 2009–2026 (2015)

    Article  Google Scholar 

  • J.R. French, G. Vali, R.D. Kelly: Evolution of small cumulus clouds in Florida: Observations of pulsating growth, Atmos. Res. 52(1/2), 143–165 (1999)

    Article  Google Scholar 

  • Y. Wang, B. Geerts: Observations of detrainment signatures from non-precipitating orographic cumulus clouds, Atmos. Res. 99(2), 302–324 (2011)

    Article  Google Scholar 

  • J. Hallett, S.C. Mossop: Production of secondary ice particles during the riming process, Nature 249(5452), 26–28 (1974)

    Article  Google Scholar 

  • C. Klepp, F. Ament, S. Bakan, L. Hirsch, B. Stevens: NARVAL Campaign Report, Reports on Earth System Science, Vol. 164 (Max Planck Institute for Meteorology, Hamburg 2014), http://hdl.handle.net/11858/00-001M-0000-0026-A620-1, Accessed 19 July 2021

    Google Scholar 

  • B. Albrecht, V. Ghate, J. Mohrmann, R. Wood, P. Zuidema, C. Bretherton, C. Schwartz, E. Eloranta, S. Glienke, S. Donaher, M. Sarkar, J. McGibbon, A.D. Nugent, R.A. Shaw, J. Fugal, P. Minnis, R. Paliknoda, L. Lussier, J. Jensen, J. Vivekanandan, S. Ellis, P. Tsai, R. Rilling, J. Haggerty, T. Campos, M. Stell, M. Reeves, S. Beaton, J. Allison, G. Stossmeister, S. Hall, S. Schmidt: Cloud system evolution in the trades (CSET): Following the evolution of boundary layer cloud systems with the NSF/NCAR GV, Bull. Am. Meteorol. Soc. 100(1), 93–121 (2019)

    Article  Google Scholar 

  • R. Wood, K.-T. O, C.S. Bretherton, J. Mohrmann, B.A. Albrecht, P. Zuidema, V. Ghate, C. Schwartz, E. Eloranta, S. Glienke, R.A. Shaw, J. Fugal, P. Minnis: Ultraclean layers and optically thin clouds in the stratocumulus-to-cumulus transition. Part I: Observations, J. Atmos. Sci. 75(5), 1631–1652 (2018)

    Article  Google Scholar 

  • J. Teixeira, S. Cardoso, M. Bonazzola, J. Cole, A. DelGenio, C. DeMott, C. Franklin, C. Hannay, C. Jakob, Y. Jiao, J. Karlsson, H. Kitagawa, M. Köhler, A. Kuwano-Yoshida, C. LeDrian, J. Li, A. Lock, M.J. Miller, P. Marquet, J. Martins, C.R. Mechoso, E. v. Meijgaard, I. Meinke, P.M.A. Miranda, D. Mironov, R. Neggers, H.L. Pan, D.A. Randall, P.J. Rasch, B. Rockel, W.B. Rossow, B. Ritter, A.P. Siebesma, P.M.M. Soares, F.J. Turk, P.A. Vaillancourt, A. Von Engeln, M. Zhao: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific cross-section intercomparison (GPCI), J. Clim. 24(20), 5223–5256 (2011)

    Article  Google Scholar 

  • K.D. Williams, A. Bodas-Salcedo, M. Déqué, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S.A. Klein, C.A. Senior, D.L. Williamson: The Transpose-AMIP II Experiment and its application to the understanding of southern ocean cloud biases in climate models, J. Clim. 26(10), 3258–3274 (2013)

    Article  Google Scholar 

  • A. Bodas-Salcedo, K.D. Williams, M.A. Ringer, I. Beau, J.N.S. Cole, J.-L. Dufresne, T. Koshiro, B. Stevens, Z. Wang, T. Yokohata: Origins of the Solar radiation biases over the southern ocean in CFMIP2 models, J. Clim. 27(1), 41–56 (2014)

    Article  Google Scholar 

  • E.J. O’Connor, R.J. Hogan, A.J. Illingworth: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar, J. Appl. Meteorol. 44(1), 14–27 (2005)

    Article  Google Scholar 

  • C.D. Rodgers: Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2 (World Scientific, Hackensack 2000)

    Book  Google Scholar 

  • J. Delanoë, R.J. Hogan: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res. 113(D7), D07204 (2008)

    Article  Google Scholar 

  • J.B. Mead, A.L. Pazmany: Quadratic phase coding for high duty cycle radar operation, J. Atmos. Ocean. Technol. 36(6), 957–969 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Hagen, M. et al. (2021). Airborne Radar. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_39

Download citation

Publish with us

Policies and ethics