Skip to main content

Abstract

This chapter describes the measuring principles and technological solutions available for in-situ measurements of liquid (rain) and solid (snow) atmospheric precipitation. They can be classified into catching and non-catching precipitation gauges. Instruments belonging to the first family are generally based on gravity-related measuring principles (weighing, tipping buckets, floating devices), while the second group includes instruments based on optical, acoustic, and microwave principles (e. g., disdrometers). All instruments are subject to both systematic (often unknown) biases and measurement uncertainties, depending on the design, the measuring principle, the algorithms used for data interpretation and correction, etc. Moreover, environmental factors affect the measurement accuracy as well, depending on the atmospheric conditions at the collector, the siting characteristics, etc. Typical environmental factors include the gradients of atmospheric temperature, wind speed, and solar radiation and may result in a significant underestimation of accumulated precipitation. The present chapter addresses the achievable accuracy of instruments for in-situ measurement of liquid and solid precipitation, based on both the outcomes of the recent WMO intercomparison initiatives and the accurate laboratoy and field tests presently ongoing within the activities of the WMO/CIMO Lead Centre on Precipitation Intensity (Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • WMO: Guide to Instruments and Methods of Observation, WMO-No. 8, Volume I, Measurement of Meteorological Variables (World Meteorological Organization, Geneva 2018)

    Google Scholar 

  • I. Strangeways: Precipitation: Theory, Measurement and Distribution (Cambridge University Press, Cambridge 2006)

    Book  Google Scholar 

  • S. Michaelides, V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, J.E. Lane: Precipitation: Measurement, remote sensing, climatology and modeling, Atmos. Res. 94(4), 512–533 (2009)

    Article  Google Scholar 

  • E. Vuerich, C. Monesi, L.G. Lanza, L. Stagi, E. Lanzinger: WMO Field Intercomparison of Rainfall Intensity Gauges, WMO/TD-No.1504 IOM Report No.99 (World Meteorological Organisation, Geneva 2009)

    Google Scholar 

  • J.C. Kurtyka: Precipitation Measurements Study (University of Illinois, Urbana 1953)

    Google Scholar 

  • I. Strangeways: A history of rain gauges, Weather 65(5), 133–138 (2010)

    Article  Google Scholar 

  • J. Hann: Die ältesten Regenmengen in Palästina, Meteorol. Z. 12, 136–140 (1895)

    Google Scholar 

  • J. Feliks: Agriculture in Palestine in the Period of the Mishna and Talmud (Magnes, Jerusalem 1963), (in Hebrew)

    Google Scholar 

  • Y. Goldreich: The Climate of Israel: Observation, Research and Application (Springer, New York 2003)

    Book  Google Scholar 

  • W.E. Middleton: Invention of the Meteorological Instruments (Johns Hopkins Press, Baltimore 1969)

    Google Scholar 

  • V. Alexei: Qin Jiushao, Chinese Mathematician. Encyclopædia Britannica 2017). https://www.britannica.com/biography/Qin-Jiushao, Accessed 05 July 2021

    Google Scholar 

  • J. Needham: Science and Civilization in China. Vol. 3: Mathematics and the Science of the Heavens and the Earth (Cambridge Univ. Press, Cambridge 1959)

    Google Scholar 

  • A.K. Biswas: The automatic rain-gauge of Sir Christopher Wren, F.R.S., Notes Rec. R. Soc. Lond. 22(1/2), 94–104 (1967)

    Google Scholar 

  • I.R. Calder, C.H.R. Kidd: A note on the dynamic calibration of tipping-bucket gauges, J. Hydrol. 39, 383–386 (1978)

    Article  Google Scholar 

  • J. Marsalek: Calibration of the tipping-bucket raingage, J. Hydrol. 53(3–4), 343–354 (1981)

    Article  Google Scholar 

  • J. Niemczynowicz: The dynamic calibration of tipping-bucket raingauges, Hydrol. Res. 17(3), 203–214 (1986)

    Article  Google Scholar 

  • Č. Maksimović, L. Bužek, J. Petrović: Corrections of rainfall data obtained by tipping bucket rain gauge, Atmos. Res. 27(1), 45–53 (1991)

    Article  Google Scholar 

  • M.D. Humphrey, J.D. Istok, J.Y. Lee, J.A. Hevesi, A.L. Flint: A new method for automated dynamic calibration of tipping-bucket rain gauges, J. Atmos. Ocean. Technol. 14(6), 1513–1519 (1997)

    Article  Google Scholar 

  • M. Colli, L.G. Lanza, P.W. Chan: Co-located tipping-bucket and optical drop counter RI measurements and a simulated correction algorithm, Atmos. Res. 119, 3–12 (2013)

    Article  Google Scholar 

  • P. La Barbera, L.G. Lanza, L. Stagi: Tipping bucket mechanical errors and their influence on rainfall statistics and extremes, Water. Sci. Technol. 45(2), 1–9 (2002)

    Article  Google Scholar 

  • M.H. Stow: Rain gauge experiments at Hawskers, near Whitby, Yorkshire, Br. Rainfall 1870, 9–22 (1871)

    Google Scholar 

  • B.E. Goodison, P.Y.T. Louie, D. Yang: WMO Solid Precipitation Measurement Intercomparison — Final Report, Rep. No. 67, WMO/TD-No. 872 (World Meteorological Organisation, Geneva 1998)

    Google Scholar 

  • B. Sevruk, M. Ondras, B. Chvila: The WMO precipitation measurement intercomparisons, Atmos. Res. 92(3), 376–380 (2009)

    Article  Google Scholar 

  • B. Sevruk, W.R. Hamon: International Comparison of National Precipitation Gauges with a Reference Pit Gauge, WMO/TD-No. 38, IOM Report No. 17 (World Meteorological Organisation, Geneva 1984) p. 135

    Google Scholar 

  • M. Leroy, C. Bellevaux, J.P. Jacob: WMO Intercomparison of Present Weather Sensors/Systems: Canada and France, 1993-1995. Final Report, WMO/TD-No. 887, IOM Report No. 73 (World Meteorological Organisation, Geneva 1998)

    Google Scholar 

  • L. Lanza, M. Leroy, C. Alexandropoulos, L. Stagi, W. Wauben: Laboratory Intercomparison of Rainfall Intensity Gauges, WMO/TD-No. 1304, IOM Report No. 84 (World Meteorological Organisation, Geneva 2006)

    Google Scholar 

  • L.G. Lanza, E. Vuerich: The WMO field intercomparison of rain intensity gauges, Atmos. Res. 94(4), 534–543 (2009)

    Article  Google Scholar 

  • L.G. Lanza, E. Vuerich: Non-parametric analysis of one-minute rain intensity measurements from the WMO Field Intercomparison, Atmos. Res. 103, 52–59 (2012)

    Article  Google Scholar 

  • L.G. Lanza, L. Stagi: High resolution performance of catching type rain gauges from the laboratory phase of the WMO Field Intercomparison of rain intensity gauges, Atmos. Res. 94(4), 555–563 (2009)

    Article  Google Scholar 

  • L.G. Lanza, L. Stagi: Non-parametric error distribution analysis from the laboratory calibration of various rainfall intensity gauges, Water. Sci. Technol. 65(10), 1745–1752 (2012)

    Article  Google Scholar 

  • WMO: WMO Solid Precipitation Intercomparison Experiment (SPICE) (2012–2015), IOM Report No. 131 (World Meteorological Organisation, Geneva 2018)

    Google Scholar 

  • B. Sevruk: Methods of Correction for Systematic Error in Point Precipitation Measurement for Operational Use, WMO-No. 589; OHR No. 21 (World Meteorological Organisation, Geneva 1982)

    Google Scholar 

  • L.G. Lanza, L. Stagi: Certified accuracy of rainfall data as a standard requirement in scientific investigations, Adv. Geosci. 16, 43–48 (2008)

    Article  Google Scholar 

  • A. Molini, P. La Barbera, L.G. Lanza, L. Stagi: Rainfall intermittency and the sampling error of tipping-bucket rain gauges, Phys. Chem. Earth C 26(10–12), 737–742 (2001)

    Google Scholar 

  • A. Molini, L.G. Lanza, P. La Barbera: Improving the accuracy of tipping-bucket rain records using disaggregation techniques, Atmos. Res. 77(1–4), 203–217 (2005)

    Article  Google Scholar 

  • A. Molini, L.G. Lanza, P. La Barbera: The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications, Hydrol. Process. 19(5), 1073–1088 (2005)

    Article  Google Scholar 

  • A. Adami, L. Da Deppo: On the systematic errors of tipping bucket recording rain gauges. In: Proc. Int. Worksh. Correct. Precip. Meas., Zurich (1985) pp. 1–3

    Google Scholar 

  • R.M. Lan, Y.Q. Cao: Design and realization of high precision FBG rain gauge based on triangle cantilever beam and its performance research, Optoelectron. Lett. 11(3), 229–232 (2015)

    Article  Google Scholar 

  • C.Y. Kuo, S.Y. Chen, W.F. Liu, H.Y. Chang: The fiber grating rain gauge. In: 7th Int. Symp. Next Gener. Electron. (ISNE) (2018) pp. 1–2

    Google Scholar 

  • M. Stagnaro, A. Cauteruccio, M. Colli, L.G. Lanza, P.W. Chan: Laboratory assessment of two catching type drop-counting rain gauges, Geophys. Res. Abstr. 20, EGU2018-12407 (2018)

    Google Scholar 

  • M. Löffler-Mang, D. Schön, M. Landry: Characteristics of a new automatic hail recorder, Atmos. Res. 100(4), 439–446 (2011)

    Article  Google Scholar 

  • R.M. Rasmussen, J. Hallett, R. Purcell, S.D. Landolt, J. Cole: The hotplate precipitation gauge, J. Atmos. Ocean. Technol. 28(2), 148–164 (2011)

    Article  Google Scholar 

  • A. Cauteruccio, E. Chinchella, M. Stagnaro, L.G. Lanza: Snow particle collection efficiency and adjustment curves for the hotplate precipitation gauge, J. Hydrometeor. 22, 941–954 (2021)

    Article  Google Scholar 

  • B.E. Sheppard: Effect of rain on ground-based microwave radiometric measurements in the 20–90-GHz range, J. Atmos. Ocean. Technol. 13(6), 1139–1151 (1996)

    Article  Google Scholar 

  • F.S. Marzano, D. Cimini, M. Montopoli: Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, Atmos. Res. 97(4), 583–600 (2010)

    Article  Google Scholar 

  • CEN: Hydrometry – Measurement of the Rainfall Intensity (Liquid Precipitation): Requirements, Calibration Methods and Field Measurements, CEN/TR 16469:2013 (Comité Européen de Normalisation, Brussels 2013)

    Google Scholar 

  • ISO: ISO: Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO/IEC Guide 98-3:2008 (International Organization for Standardization, Geneva 2008)

    Google Scholar 

  • JCGM: International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM) (Joint Committee for Guides in Metrology, Sèvres 2008)

    Google Scholar 

  • M. Colli, M. Pollock, M. Stagnaro, L.G. Lanza, M. Dutton, E. O'Connell: A computational fluid-dynamics assessment of the improved performance of aerodynamic rain gauges, Water. Resour. Res. 54(2), 779–796 (2018)

    Article  Google Scholar 

  • V. Nešpor, B. Sevruk: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation, J. Atmos. Ocean. Technol. 16(4), 450–464 (1999)

    Article  Google Scholar 

  • M. Colli, R. Rasmussen, J.M. Thériault, L.G. Lanza, C.B. Baker, J. Kochendorfer: An improved trajectory model to evaluate the collection performance of snow gauges, J. Appl. Meteorol. Climatol. 54(8), 1826–1836 (2015)

    Article  Google Scholar 

  • ISO: Air quality. Meteorology. Siting Classifications for Surface Observing Stations on Land, ISO 19289:2015 (International Organization for Standardization, Geneva 2015)

    Google Scholar 

  • A. Cauteruccio, M. Colli, L.G. Lanza: The impact of wind and turbulence on ground-based liquid precipitation measurements. In: Tech. Conf. Meteorol. Environ. Instrum. Methods Obs. (WMO/CIMO TECO) (2016)

    Google Scholar 

  • UNI: Hydrometry – Measurement of Rainfall Intensity (Liquid Precipitation) – Metrological Requirements and Test Methods for Catching Type Gauges, UNI 11452:2012 (Ente Nazionale Italiano di Unificazione, Milan 2012)

    Google Scholar 

  • F.Y. Testik, M.K. Rahman: High-speed optical disdrometer for rainfall microphysical observations, J. Atmos. Ocean. Technol. 33(2), 231–243 (2016)

    Article  Google Scholar 

  • A. Kruger, W.F. Krajewski: Two-dimensional video disdrometer: A description, J. Atmos. Ocean. Technol. 19(5), 602–617 (2002)

    Article  Google Scholar 

  • T.A. Costello, H.J. Williams: Short duration rainfall intensity measured using calibrated time-of-tip data from a tipping bucket raingage, Agric. For. Meteorol. 57(1), 147–155 (1991)

    Article  Google Scholar 

  • E. Habib, W.F. Krajewski, A. Kruger: Sampling errors of tipping-bucket rain gauge measurements, J. Hydrol. Eng. 6(2), 159–166 (2001)

    Article  Google Scholar 

  • M. Stagnaro, M. Colli, L.G. Lanza, P.W. Chan: Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges, Atmos. Meas. Tech. 9(12), 5699–5706 (2016)

    Article  Google Scholar 

  • M.D. Pollock, G. O'Donnell, P. Quinn, M. Dutton, A. Black, M.E. Wilkinson, M. Colli, M. Stagnaro, L.G. Lanza, E. Lewis, C.G. Kilsby, P.E. O'Connell: Quantifying and mitigating wind-induced undercatch in rainfall measurements, Water. Resour. Res. 54(6), 3863–3875 (2018)

    Article  Google Scholar 

  • J.M. Thériault, R. Rasmussen, E. Petro, J.Y. Trépanier, M. Colli, L.G. Lanza: Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference, J. Appl. Meteorol. Climatol. 54(9), 1918–1930 (2015)

    Article  Google Scholar 

  • R. Rasmussen, B. Baker, J. Kochendorfer, T. Meyers, S. Landolt, A.P. Fischer, J. Black, J.M. Thériault, P. Kucera, D. Gochis, C. Smith, R. Nitu, M. Hall, K. Ikeda, E. Gutmann: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed, Bull. Am. Meteorol. Soc. 93(6), 811–829 (2012)

    Article  Google Scholar 

  • M.A. Wolff, K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, R. Brækkan: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study, Hydrol. Earth Syst. Sci. 19(2), 951–967 (2015)

    Article  Google Scholar 

  • J. Kochendorfer, R. Rasmussen, M. Wolff, B. Baker, M.E. Hall, T. Meyers, S. Landolt, A. Jachcik, K. Isaksen, R. Brækkan, R. Leeper: The quantification and correction of wind-induced precipitation measurement errors, Hydrol. Earth Syst. Sci. 21(4), 1973–1989 (2017)

    Article  Google Scholar 

  • J. Kochendorfer, R. Nitu, M. Wolff, E. Mekis, R. Rasmussen, B. Baker, M.E. Earle, A. Reverdin, K. Wong, C.D. Smith, D. Yang, Y.-A. Roulet, S. Buisan, T. Laine, G. Lee, J.L.C. Aceituno, J. Alastrué, K. Isaksen, T. Meyers, R. Brækkan, S. Landolt, A. Jachcik, A. Poikonen: Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE, Hydrol. Earth Syst. Sci. 21(7), 3525–3542 (2017)

    Article  Google Scholar 

  • S.T. Buisán, M.E. Earle, J.L. Collado, J. Kochendorfer, J. Alastrué, M. Wolff, C.D. Smith, J.I. López-Moreno: Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network, Atmos. Meas. Tech. 10(3), 1079–1091 (2017)

    Article  Google Scholar 

  • M. Colli, L.G. Lanza, R. Rasmussen, J.M. Thériault: The collection efficiency of shielded and unshielded precipitation gauges. Part I: CFD airflow modeling, J. Hydrometeorol. 17(1), 231–243 (2016)

    Article  Google Scholar 

  • M. Colli, L.G. Lanza, R. Rasmussen, J.M. Thériault: The collection efficiency of shielded and unshielded precipitation gauges. Part II: Modeling particle trajectories, J. Hydrometeorol. 17(1), 245–255 (2016)

    Article  Google Scholar 

  • A. Cauteruccio, L.G. Lanza: Parameterization of the collection efficiency of a cylindrical catching-type rain gauge based on rainfall intensity, Water 12, 3431 (2020)

    Google Scholar 

  • A. Cauteruccio, E. Brambilla, M. Stagnaro, L.G. Lanza, D. Rocchi: Wind Tunnel Validation of a Particle Tracking Model to Evaluate the Wind-Induced Bias of Precipitation Measurements, Water Resour. Res. 57, e2020WR028766 (2021)

    Google Scholar 

  • J.S. Marshall, W.M. Palmer: The distribution of raindrops with size, J. Meteorol. 5(4), 165–166 (1948)

    Article  Google Scholar 

  • M.A.A. Santana, P.L.O. Guimarães, L.G. Lanza, E. Vuerich: Metrological analysis of a gravimetric calibration system for tipping-bucket rain gauges, Meteorol. Appl. 22, 879–885 (2015)

    Article  Google Scholar 

  • M.A.A. Santana, P.L.O. Guimarães, L.G. Lanza: Development of procedures for calibration of meteorological sensors. Case study: Calibration of a tipping-bucket rain gauge and data-logger set, J. Phys. Conf. Ser. 975(1), 012006 (2018)

    Article  Google Scholar 

  • M.A.A. Santana, P.L.O. Guimarães, L.G. Lanza: Uncertainty contributions in the calibration of rain gauges. In: Metrol. Meteorol. Clim. Conf. (MMC) (2016)

    Google Scholar 

  • CEN: Hydrometry - Measurement Requirements and Classification of Rainfall Intensity Measuring Instruments, EN 17277:2019 (Comité Européen de Normalisation, Brussels 2019)

    Google Scholar 

  • ISO: Quality Management Systems – Fundamentals and Vocabulary, ISO 9000:2015, 4th edn. (International Organization for Standardization, Geneva 2015)

    Google Scholar 

  • ISO: Quality Management Systems – Requirements, ISO 9001:2015, 5th edn. (International Organization for Standardization, Geneva 2015)

    Google Scholar 

  • ISO: Quality Management – Quality of an Organization – Guidance to Achieve Sustained Success, ISO 9004:2018, 4th edn. (International Organization for Standardization, Geneva 2018)

    Google Scholar 

  • ISO: Guidelines for Auditing Management Systems, ISO 19011:2018, 3rd edn. (International Organization for Standardization, Geneva 2018)

    Google Scholar 

  • ISO: Measurement Management Systems – Requirements for Measurement Processes and Measuring Equipment, ISO 10012:2004, 3rd edn. (International Organization for Standardization, Geneva 2018)

    Google Scholar 

  • WMO-CIMO: Lead Centre “Benedetto Castelli” on Precipitation Intensity, www.precipitation-intensity.it (2020), Accessed 05 July 2021

  • M. Colli, L.G. Lanza, P. La Barbera: Performance of a weighing rain gauge under laboratory simulated time-varying reference rainfall rates, Atmos. Res. 131, 3–12 (2013)

    Article  Google Scholar 

  • L.G. Lanza, A. Merlone, A. Cauteruccio, E. Chinchella, M. Stagnaro, M. Dobre, M.C. Garcia Izquierdo, J. Nielsen, H. Kjeldsen, Y.A. Roulet, G. Coppa, C. Musacchio, C. Bordianu, M. Parrondo: Calibration of non-catching precipitation measurement instruments: A review, Meteorol. Appl. 28, e2002 (2021)

    Google Scholar 

  • BSI: Acquisition and Management of Meteorological Precipitation Data from a Gauge Network, BS 7843:2012 (British Standards Institution, London 2012)

    Google Scholar 

  • VDI: Environmental Meteorology – Meteorological Measurements – Precipitation, VDI 3786-7 (Beuth, Berlin 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca G. Lanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Cauteruccio, A., Colli, M., Stagnaro, M., Lanza, L.G., Vuerich, E. (2021). In-situ Precipitation Measurements. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_12

Download citation

Publish with us

Policies and ethics