Skip to main content

Ecology of Teucrium Species: Habitat Related Metal Content Dynamics

  • Chapter
  • First Online:
Teucrium Species: Biology and Applications

Abstract

The chapter reviews the available data about the effect of habitat related metal content on Teucrium chamaedrys and T. montanum (Lamiaceae). The study was focused on element concentrations in plant and soil samples, both on metalliferous and non-metalliferous soils. Metal concentrations varied depending on species and habitat type. The levels of elements in plant tissues from non-metalliferous localities were always lower, compared to those from metalliferous (serpentine) ones. None of the species could not hyperaccumulate metals although the metal concentration in some of them exceeded the range, which is naturally found in plants. Depending on the nickel accumulation, both analyzed species are classified as excluders. The level of tolerance was related to the amount of metals and their bioavailability in the soil. The metal concentrations for the toxic elements were above the permissible limits for the toxic elements, in both species. The populations of the studied species demonstrated some adaptations to the serpentine habitats related to their secondary metabolites and its morphology, which is known as serpentinomorphoses. As a result of the heavy metal profiles of the soils, significantly higher values and differences in the quantity of secondary metabolites were recorded in plant populations growing on serpentines compared to non-serpentine ones. Teucrium chamaedrys and T. montanum populations on metalliferous habitats, possess morphological differences in contrast of populations on non-metalliferous habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminium

B:

Boron

BAF:

Bioaccumulation factor

Ca:

Calcium

Cd:

Cadmium

CEC:

Cation exchange capacity

Co:

Cobalt

CO2:

Carbon dioxide

Cr:

Chromium

Cu:

Copper

Fe:

Iron

GR:

Glutathione reductase

GSH:

Reducted glutathione

H:

Hydrogen

H2O2:

Hydrogen peroxide

Hg:

Mercury

K:

Potassium

Mg:

Magnesium

Mn:

Manganese

N:

Nitrogen

Na:

Sodium

Ni:

Nickel

P:

Phosphorus

Pb:

Lead

ROS:

Reactive oxygen species

Zn:

Zinc

References

  • Adamidis GC, Aloupi M, Kazakou E, Dimitrakopoulos PG (2014) Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum. Chemosphere 95:496–502

    Article  CAS  PubMed  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Google Scholar 

  • Ater M, Lefebvre C, Gruber W, Meerts P (2000) A phytogeochemical survey of the flora of ultramafic and adjacent normal soils in North Morocco. Plant Soil 218:127–135

    Article  CAS  Google Scholar 

  • Azmat R, Haider S, Nasreen H, Aziz F, Riaz M (2009) A variable alternative mechanism in adapting the plants to heavy metal environment. Pak J Bot 41:2729–2738

    Google Scholar 

  • Babalonas D, Karataglis S, Kabassakalis V (1984) The ecology of plant populations growing on serpentine soils. III. Some plant species from North Greece in relation to the serpentine problem. Phyton 24:225–238

    Google Scholar 

  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves R, Morel J-L, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801

    CAS  Google Scholar 

  • Bazan G, Galizia G (2018) Geographical and ecological outline of metal(loid) accumulating plants in Italian vascular flora. Ecocycles 4:47–64

    Article  Google Scholar 

  • Bentham G (1833) Labiatarum genera et species. Ridgeway Sons, London

    Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G (2018) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Bezić N, Vuko E, Dunkić V, Ruščić M, Blažević I, Burčul F (2011) Antiphytoviral activity of sesquiterpene-rich essential oils from four Croatian Teucrium species. Molecules 16:8119–8129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bini-Maleci L, Servettaz O (1991) Morphology and distribution of trichomes in Italian species of Teucrium sect. Chamaedrys (Labiatae): a taxonomical evaluation. Plant Syst Evol 174:83–91

    Article  Google Scholar 

  • Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal content in soil and vegetation of semi-natural ecosystems at Rothamsted experimental station. Plant Soil 240:235–251

    Article  CAS  Google Scholar 

  • Boissier PE (1879) Lamiaceae. In: Flora Orientalis 4. apud H. Georg, Geneva/Basel, pp 805–822

    Google Scholar 

  • Boyd R, Wall M, Santos S, Davis M (2009) Variation of morphology and elemental concentrations in the California nickel hyperaccumulator Streptanthus polygaloides (Brassicareae), soil and biota of serpentine: a world view. Northeast Nat 16:21–39

    Article  Google Scholar 

  • Brady K, Kruckeberg A, Bradshaw H (2005) Evolutionary ecology of plant adaptation to serpentine soils. Ann Rev Ecol Evol S 36:243–266

    Article  Google Scholar 

  • Branković S, Cupara S, Glisić R, Djelić G, Grbović F, Kojicić K, Milovanović O (2017) Phytoaccumulation in plants of mountain Goč in Serbia. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 27:196–201

    Google Scholar 

  • Bratteler M, Baltisberger M, Widmer A (2006) QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Ann Bot 98:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  PubMed  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach (ecology, phytogeography and physiology). Dioscorides Press, Portland

    Google Scholar 

  • Brooks RR, Yang XH (1984) Elemental levels and relationships in the endemic serpentine flora of the central Dyke, Zimbabwe and their significance as controlling factors for the flora. Taxon 33:392–399

    Article  Google Scholar 

  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region – Southern Italy. Plant Soil 318:285–298

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  CAS  PubMed  Google Scholar 

  • Čanadanović-Brunet J, Djilas MS, Ćetković SG, Tumbas TV, Mandić IA, Čanadanović MV (2006) Antioxidant activities of different Teucrium montanum L. extracts. Int J Food Sci Technol 41:667–673

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  PubMed  Google Scholar 

  • Conner JK, Sterling A (1996) Selection for independence of floral and vegetative traits: evidence from correlation patterns in five species. Can J Bot 74:642–644

    Article  Google Scholar 

  • Cornara L, Roccotiello E, Minganti V, Drava G, De Pellegrini R, Mariotti MG (2007) Level of trace elements in plants growing on serpentine and metalliferous soils. J Plant Nutr Soil Sci 170:781–787

    Article  CAS  Google Scholar 

  • Di Toppi LS, Gabrrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Diklić N (1974) Teucrium. In: Jakovljević S (ed) Flore de la Republique Socialiste de Serbie VI, 1st edn. Serbian Academy of Sciences and Arts, Belgrade, pp 349–357

    Google Scholar 

  • Dudić B, Rakić T, Sinzar J, Atanacković V, Stevanović B (2007) Differences of metal concentrations and morpho-anatomical adaptations between obligate and facultative serpentinophytes from Western Serbia. Arch Biol Sci 59:341–349

    Article  Google Scholar 

  • Ekim T (1982) Teucrium L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands VII. Edinburgh University Press, Edinburgh, pp 53–75

    Google Scholar 

  • Endt DV, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114

    Article  Google Scholar 

  • Evstatieva L, Hardalova R, Stoyanova K (2007) Medicinal plants in Bulgaria: diversity, legislation, conservation and trade. Phytol Balcan 13:415–427

    Google Scholar 

  • Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora. Folia Geobot 38:357–366

    Article  Google Scholar 

  • Farago ME (1994) Plants and chemical elements biochemistry, uptake, tolerance and toxicity. Wiley-VCH, Weinheim

    Google Scholar 

  • Filippini R, Piovan A, Borsarini A, Caniato R (2010) Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 81:115–119

    Article  CAS  PubMed  Google Scholar 

  • Franco A, Rufo L, Zuluaga J, Fuente V (2013) Metal uptake and distribution in cultured seedlings of Nerium oleander L. (Apocynaceae) from Rio Tinto (Huelva, Spain). Biol Trace Elem Res 155:82–92

    Article  CAS  PubMed  Google Scholar 

  • Gabbrielli R, Pandolfini T (1984) Effect of Mg+2 and Ca+2 on the response to nickel toxicity in a serpentine and nickel accumulating species. Physiol Plant 62:540–544

    Article  CAS  Google Scholar 

  • Golubović T, Blagojević B (2013) Concentration of heavy metals in medicinal plants in Serbia – potential health risk. Paper presented at the International science conference “Reporting for sustainability”, Becici, Montenegro, 7–10 May 2013

    Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Grunes DL, Cary EE, Norvel WA (1987) Effects of zinc deficiency on the accumulation of boron and other mineral nutrients in barley. Soil Sci Soc Am J 51:652–657

    Article  CAS  Google Scholar 

  • Greuter W, Burdet HM, Long G (1986) Med-checklist III, Conservatoire et Jardin Botaniques ville de Genève, Genève

    Google Scholar 

  • Grubešić RJ, Vladimir-Knezevic S, Kremer D, Kalodera Z, Vukovic J (2007) Trichome micromorphology in Teucrium (Lamiaceae) species growing in Croatia. Biologia (Bratislava) 62:148–156

    Article  Google Scholar 

  • Grubešić R, Kremer D, Vladimir-Knežević S, Vuković Rodríguez J (2012) Analysis of polyphenols, phytosterols, and bitter principles in Teucrium L. species. Cent Eur J Biol 7:542–550

    Google Scholar 

  • Haby VA, Russelle M, Skogley P, Earl O (1990) Soil testing for potassium, calcium and magnesium. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Madison, pp 181–228

    Google Scholar 

  • Hamid N, Bukhari N, Jawaid F (2010) Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak J Bot 42:239–246

    CAS  Google Scholar 

  • Harborne JB, Tomás-Barberán FA, Williams CA, Gil MI (1986) A study of flavonoids from European Teucrium species. Phytochemistry 25:2811–2816

    Article  CAS  Google Scholar 

  • Hossain MR (2007) Flora of some heavy hyperaccumulators recorded in Penjwin and Mawat in Iraqi Kurdistan. Dissertation, Sulaimani University Iraq

    Google Scholar 

  • Ibrahim MH, Kong YC, Mohd Zain NA (2017) Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant sambung nyawa (Gynura procumbens (Lour.) Merr). Molecules 22:1–16

    Article  CAS  Google Scholar 

  • Ivancheva S, Stancheva B (2001) Ethnobotany in Bulgaria. In: Ozhatay N (ed) Proceedings of the 2nd Balkan Botanical Congress, Istanbul

    Google Scholar 

  • Jain A, Ranade R, Pritam P, Joshi N, Vavilala SL, Jain A (2014) A comparative study of antioxidant activity, total phenolic and flavonoid contents in different parts of Helicteres isora L. AJLS 2:292–302

    Article  Google Scholar 

  • Jenny H (1980) The soil resource: origin and behaviour. Springer, New York

    Book  Google Scholar 

  • Johnston WR, Proctor J (1977) Metal concentrations in plants and soils from two British serpentine sites. Plant Soil 46:275–278

    Article  CAS  Google Scholar 

  • Juranović Cindrić I, Zeiner M, Glamuzina E, Stingeder G (2013) Elemental characterisation of the medical herbs Salvia officinalis L. and Teucrium montanum L. grown in Croatia. Microchem J 107:185–189

    Article  CAS  Google Scholar 

  • Jurišić R, Kalodera Z, Grgić J, Grgić Z, Ćavar S (2001) Determination of copper, cobalt and nickel in Teucrium species growing in Croatia. Acta Pharma 51:75–80

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. Taylor & Francis Group, London

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. Taylor & Francis Group, London

    Google Scholar 

  • Karataglis S, Babalonas D, Kabasakalis B (1982) The ecology of plant populations growing on serpentine soils. II Ca/Mg ratio and the Cr, Fe, Ni, Co concentrations as development factors of Buxus sempervirens L. Phyton (Austria) 22:317–327

    CAS  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    Article  CAS  PubMed  Google Scholar 

  • Kashem MA, Singh BR (2002) The effect of fertilizer additions on the solubility and plant-availability of Cd, Ni and Zn in soil. Nutr Cycl Agroecosyst 62:287–296

    Article  CAS  Google Scholar 

  • Kassim J, Rahim B (2014) Some heavy metals content in plants grown on serpentinitic soil from Penjwin and Mawat area at Kurdistan region – Iraq. Int J Agric Sci Nat Res 1:31–39

    Google Scholar 

  • Kastori R (1993) Heavy metals and pesticides in soil – heavy metals and pesticides in the soil of Vojvodina (in Serbian). Faculty of Agriculture, Novi Sad

    Google Scholar 

  • Kataeva MN, Alexeeva-Popova NV, Drozdova IV, Beljaeva AI (2004) Chemical composition of soils and plant species in the Polar Urals as influence by rock type. Geoderma 122:257–268

    Article  CAS  Google Scholar 

  • Kay K, Ward K, Watt L, Schrmske D (2011) Plant speciation. In: Harisson S, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkely/Los Angeles/London, pp 71–95

    Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-off s of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Kazakou E, Adamidis G, Baker A, Reeves R, Gogino M, Dimitrakopoulos P (2010) Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil 332:369–385

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Osbourn A (2012) Making new molecules – evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15:415–423

    Article  CAS  PubMed  Google Scholar 

  • Konstantinou M, Babalonas D (1996) Metal uptake by Caryophyllaceae species from metalliferous soils in northern Greece. Plant Syst Evol 203:1–10

    Article  CAS  Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25

    CAS  PubMed  Google Scholar 

  • Krause W (1958) Andere Bodenspezialisten. In: Michael G (ed) Handbuch der Pflanzenphysiologie, vol 4. Springer, Berlin, pp 758–806

    Google Scholar 

  • Kruckeberg AR (1969) The implications of ecology for plant systematics. Taxon 18:92–120

    Article  Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley

    Google Scholar 

  • Kruckeberg AR (1992) Plant life of western North American ultramafics. In: Roberts B, Proctor J (eds) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht, pp 31–73

    Chapter  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Stuart Chapin F III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta Med 212:323–331

    Article  CAS  Google Scholar 

  • Lieth H, Markert B (1988) The establishment of element concentration cadasters for ecosystems (ECCE) in the different vegetation zones of the earth. Biol Int 16:7–11

    Google Scholar 

  • Lombini A, Dinelli E, Ferrari C, Simoni A (1998) Plant-soil relationships in the serpentinite screes of Mt Prinzera (Northern Apennines, Italy). J Geochem Explor 64:19–33

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Maleš Ž, Pilepić KH, Bojić M, Tatalović Z (2015) Determination of the content of total polyphenols, non-tannin polyphenols and tannins in five species of the genus Teucrium L. Period Biol 117:453–455

    Article  Google Scholar 

  • Mandal MS, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markova M (1992) Teucrium L. In: Kozuharov S (ed) Opredelitel na vishite rastenia v Balgaria (in Bulgarian). Nauka i Izkustvo, Sofia, pp 491–492

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, Waltham

    Google Scholar 

  • Mayer MS, Soltis PS (1994) The evolution of endemics: a chloroplasts DNA phylogeny of the Streptanthus glandulosus complex (Cruciferae). Syst Bot 19:537–574

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, Worblaufen-Bern

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Milošević-Djordjević O, Stošić I, Stanković M, Grujičić D (2013) Comparative study of genotoxicity and antimutagenicity of methanolic extracts from Teucrium chamaedrys and Teucrium montanum in human lymphocytes using micronucleus assay. Cytotechnology 65:863–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–149

    CAS  PubMed  Google Scholar 

  • Navarro T (2010) Teucrium L. In: Castroviejo S et al (eds) Flora Iberica, VerbenaceaeLabiataeCallitrichaceae, vol 7. Real Jardín Botánico, CSIC, Madrid, pp 30–166

    Google Scholar 

  • Navarro T, El Oualidi J (2000) Synopsis of Teucrium L. (Labiatae) in the Medditerranean region and surrounding areas. Flora Medit 10:349–363

    Google Scholar 

  • Nikolov S (2006) Encyclopedia of medicinal plants in Bulgaria (in Bulgarian). Publishing House Trud, Sofia

    Google Scholar 

  • O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison S, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, pp 97–137

    Google Scholar 

  • Obratov-Petković D, Popović I, Belanović S, Kadović R (2006) Ecobiological study of medicinal plants in some regions of Serbia. Plant Soil Environ 52:459–467

    Article  Google Scholar 

  • Obratov-Petković D, Bjedov I, Belanović S (2008) The relationship between heavy metal contents and bedrock in some species of genus Teucrium L. in Serbia. In: Ruzichkova G (ed) Proceedings of the 5th conference on medicinal and aromatic plants of Southeast European countries, Brno

    Google Scholar 

  • Pacifico S, D’Abrosca B, Pascarella MT, Letizia M, Uzzo P, Piscopo V, Fiorentino A (2009) Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems. Bioorg Med Chem 17:6173–6179

    Article  CAS  PubMed  Google Scholar 

  • Pandy P, Tripathi K (2010) Bioaccumulation of heavy metal in soil and different plant parts of Albizia procera (Roxb.) seedling. Bioscan 5:263–266

    Google Scholar 

  • Pavlova D (2009) Morphological variation in Teucrium chamaedrys from serpentine and non-serpentine populations, soil and biota of serpentine: a world view. Northeast Nat 16:39–55

    Article  Google Scholar 

  • Pavlova D (2010) A survey of the serpentine flora in the West frontier Bulgarian Mountains (Vlahina and Ogražden). Phytol Balcan 16:97–107

    Google Scholar 

  • Pavlova D, Alexandrov S (2003) Metal uptake in some plants growing on serpentine areas in the Eastern Rhodopes Mountains (Bulgaria). Ot Sist Bot Dirgisi 10:13–31

    Google Scholar 

  • Pavlova D, Karadjova I (2012) Chemical analysis of Teucrium species (Lamiaceae) growing on serpentine soils in Bulgaria. J Plant Nutr Soil Sci 175:891–899

    Article  CAS  Google Scholar 

  • Pavlova D, Karadjova I (2013) Toxic elements profiles in selected medicinal plants growing on serpentines in Bulgaria. Biol Trace Elem Res 156:288–297

    Article  CAS  PubMed  Google Scholar 

  • Pavlova D, Kozuharova E, Dimitrov D (2003) A floristic catalogue of the serpentine areas in the Eastern Rhodope Mountains (Bulgaria). Polish Bot J 48:21–41

    Google Scholar 

  • Peev D (1989) Teucrium L. In: Velchev V, Kuzmanov B (eds) Flora Reipublicae Popularis Bulgaricae, vol 9. Bulgarian Academy of Sciences, Sofia, pp 241–249

    Google Scholar 

  • Pichi-Sermolli R (1948) Flore e vegetazione delle serpentine e delle alti ofioliti dell’alta valle del Tevere (Toscana). Webbia 6(1):380

    Article  Google Scholar 

  • Politycka B, Adamska D (2003) Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Pol J Environ Stud 12:95–98

    CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trees 14:334–335

    Google Scholar 

  • Proctor J, Nagy L (1992) Ultramafic rocks and their vegetation: an overview. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Limited, Andover, pp 469–494

    Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:256–366

    Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621

    Article  CAS  Google Scholar 

  • Rajaharuna N, Bohm B (1999) The edaphic factor and patterns of variation in Lasthenia californica (Asteraceae). Am J Bot 86:1576–1596

    Article  Google Scholar 

  • Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478

    Article  Google Scholar 

  • Rajakaruna N, Boyd R (2008) Edaphic factor. In: Jørgensen SE, Fath BD (eds) General ecology. Encyclopedia of ecology, vol 2. Elsevier, Amsterdam, pp 1201–1207

    Chapter  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of biotic stress signaling on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rašić S, Dogo S, Slanković L (2006) Inorganic analysis of herbal drugs. Part II. Plant and soil analysis – diverse bioavailability and uptake of essential and toxic elements. J Serb Chem Soc 71:1095–1105

    Article  CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5:375–383

    CAS  Google Scholar 

  • Redzić S (2010) Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, W. Balkan). J Med Plant Res 4:1003–1027

    Google Scholar 

  • Reeves R (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, NATO science series, vol 68. Springer, Dordrecht

    Chapter  Google Scholar 

  • Reeves RD (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state. Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reichinger HK (1941) Monographische stiudie über Teucrium Sect. Chamaedrys. Bot Arch 42:335–420

    Google Scholar 

  • Ritter-Studnička H (1968) Die serpentinomorphosen der flora Bosniens. Bot Jahrb 88:443–465

    Google Scholar 

  • Roberts BA, Proctor J (1992) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Rusak G, Gutzeit H, Ludwig-Müller J (2005) Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutr Res 25:143–155

    Article  CAS  Google Scholar 

  • Salmerón-Saґnchez E, Fuertes-Aguilar J, Španiel S, Peґrez-García FJ, Merlo E, Garrido-Becerra JA, Mota J (2018) Plant evolution in alkaline magnesium-rich soils: a phylogenetic study of the Mediterranean genus Hormathophylla (Cruciferae: Alysseae) based on nuclear and plastid sequences. PLoS One 13(12):e0208307. https://doi.org/10.1371/journal.pone.0208307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawidis T, Halley J, Llupo S, Bellos D, Veros D, Symeonidis L (2014) Nickel and iron concentrations in plants from mining area Pogradec, Albania. Environ Eng Manag J 13:861–871

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiol 89:1358–1365

    Article  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel J-L (1998) Heavy metal in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey R (2006) Cadmium uptake and its toxicity in higher plants. In: Khan NA, Samiullah (eds) Cadmium toxicity and tolerance in plants. Alpha Science International Ltd, Oxford, pp 63–86

    Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  CAS  PubMed  Google Scholar 

  • Sigel H, Sigel A (1990) Compendium on magnesium and its role in biology, nutrition, and physiology, 1st edn. CRC Press, New York

    Google Scholar 

  • Skinner WM, Martin RR, Naftel SJ, Macfie S, Séquin CF (2005) Multi-technique studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides growing in forest soil. In: Abstract of the 8th international conference on the biogeochemistry of trace elements, Adelaide

    Google Scholar 

  • Stanković M, Zlatić N (2019) Ethnobotany of Teucrium species. In: Martinez JL, Muñoz-Acevedo A, Rai M (eds) Ethnobotany: local knowledge and tradition. CRC Press, Taylor & Francis Group Ltd, Oxford, pp 214–231

    Chapter  Google Scholar 

  • Stanković M, Topuzović M, Solujić S, Mihajlović V (2010) Antioxidant activity and concentration of phenols and flavonoids in the whole plant and plant parts of Teucrium chamaerdys L. var. glanduliferum Haussk. J Med Plant Res 4:2092–2098

    Google Scholar 

  • Stanković M, Curcić M, Zizić J, Topuzović M, Solujić S, Marković S (2011a) Teucrium plant species as natural sources of novel anticancer compounds: antiproliferative, proapoptotic and antioxidant properties. Int J Mol Sci 12:4190–4205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanković M, Nicifirović N, Topuzović M, Solujić S (2011b) Total phenolic content, flavonoid concentrations and antioxidant activity of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb. Biotechnol Biotechnol Equip 25:2222–2227

    Article  Google Scholar 

  • Stanković M, Stefanović O, Čomić L, Topuzović M, Radojević I, Solujić S (2012) Antimicrobial activity, total phenolic content and flavonoid concentrations of Teucrium species. Cent Eur J Biol 7:664–671

    Google Scholar 

  • Stanković SM, Petrović M, Godjevać D, Dajić-Stevanović Z (2015) Screening inland halophytes from the Central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants? J Arid Environ 120:26–32

    Article  Google Scholar 

  • Štepankova J (1996) Karyological variation in the group of Myosotis alpestris (Boraginaceae). Folia Geobot Phytotaxon 31:251–262

    Article  Google Scholar 

  • Štepankova J (1997) The effect of serpentine on morphological variation in the Galium pumilum group (Rubiaceae). Thaiszia – J Bot 7:29–40

    Google Scholar 

  • Stevanović B, Stevanović V (1985) Morpho-anatomical characteristics of the species Teucrium montanum L. from different habitats. Bot Serb 9:73–88

    Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Tumbas TV, Mandić IA, Ćetković SG, Djilas MS, Čanadanović-Brunet MJ (2004) HPLC analysis of phenolic acids in Mountain germander (Teucrium montanum L.) extracts. Acta Period Technol 35:265–273

    Article  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1972) Flobra Europaea III. Cambridge University Press, Cambridge

    Google Scholar 

  • Vega FA, Covelo EF, Vazques JJ, Abdrade L (2007) Influence of mineral and organic components on copper, lead and zinc sorption by acid soils. J Environ Sci Health A 42:2167–2173

    Article  CAS  Google Scholar 

  • Veličković MJ, Dimitrijević SD, Mitić SS, Mitić NM, Kostić AD (2014) The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L. Adv Technol 3:46–51

    Google Scholar 

  • Vergnano Gambi O (1992) The distribution and ecology of the vegetation of ultramafic soils in Italy. In: Roberts B, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 217–247

    Chapter  Google Scholar 

  • Vergnano Gambi O, Gabbrielli R, Pancaro L (1982) Nickel, chromium, and cobalt in plants from Italian serpentine areas. Acta Oecol 3:291–306

    Google Scholar 

  • Vicić D, Polavder S, Stojiljkovic M, Jurišic B, Bojat N (2013a) Content and allocation of nickel, chromium, cobalt, copper and zinc in Teucrium montanum L. from serpentine habitats in Serbia. Acta Agric Serb 18:101–110

    Google Scholar 

  • Vicić D, Stoiljković M, Polavder S (2013b) Tissue Mg:Ca ratio in Teucrium montanum L. from serpentine soils of Serbia. Soil Plant 62:31–38

    Google Scholar 

  • Vlase L, Benedec D, Hanganu D, Damian G, Csillag I (2014) Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 19:5490–5507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vuković N, Milošević T, Sukdolak S, Solujić S (2008) The chemical composition of the essential oil and the antibacterial activities of the essential oil and methanol extract of Teucrium montanum. J Serb Chem Soc 73:299–305

    Article  CAS  Google Scholar 

  • Wallace A, Jones M, Alexander GV (1982) Mineral composition of native wood plants growing on a serpentine soil in California. Soil Sci 134:42–44

    Article  CAS  Google Scholar 

  • Westerbergh A (1994) Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167:297–303

    Article  CAS  Google Scholar 

  • Westerbergh A, Rune O (1996) Genetic relationship among Silene dioica (Caryophyllaceae) populations on and off serpentine: a review. Symb Bot Ups 46:277–284

    Google Scholar 

  • Westerbergh A, Saura A (1992) The effect of serpentine on the population structure of Silene dioica (Caryophyllaceae). Evolution 46:1537–1548

    Article  CAS  PubMed  Google Scholar 

  • Whitea PA, Claxtonb LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345

    Article  CAS  Google Scholar 

  • Wright J, Stanton M, Scherson R (2006) Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res 8:1–21

    Google Scholar 

  • Yaman M (2014) Teucrium as a novel discovered hyperaccumulator for the phytoextraction of Ni-contaminated soils. Ekol Derg 23:81–89

    Article  CAS  Google Scholar 

  • Yan X, Zhang F, Zeng C, Zhang M, Devcota PL, Yao T (2012) Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. Int J Environ Res Public Health 9:3209–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdraveva P, Pavlova D, Krasteva I, Pencheva I (2018) Phytochemical analysis on populations of Teucrium chamaedrys from serpentine sites in Bulgaria. CR Acad Bulg Sci 71:185–192

    CAS  Google Scholar 

  • Zhang G, Wu F, Wei K, Dong Q, Dai F, Chen F, Yang J (2006) Cadmium stress in higher plants. In: Samiullah N (ed) Cadmium toxicity and tolerance in plants. Alpha Science International, Oxford, pp 87–103

    Google Scholar 

  • Zlatić N, Stanković M, Simić Z (2017) Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ Monit Assess 189:110

    Article  PubMed  CAS  Google Scholar 

  • Zonn SV (1982) Iron in soils. Publishing House, Nauka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolja Pavlova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlova, D., Karadjova, I., Stanković, M., Zlatić, N. (2020). Ecology of Teucrium Species: Habitat Related Metal Content Dynamics. In: Stanković, M. (eds) Teucrium Species: Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52159-2_4

Download citation

Publish with us

Policies and ethics