Skip to main content

A Malware Obfuscation AI Technique to Evade Antivirus Detection in Counter Forensic Domain

  • Chapter
  • First Online:
Enabling AI Applications in Data Science

Abstract

Data obfuscation is the process of converting a constant or a variable into computational results of several constants to make it hard for the files to be detected or analyzed by anti-malware engines. In recent years, malicious based attacks are considered as one of the highest internet threats; as the majority of internet users depend on antivirus software as a protection tool, attackers use obfuscation techniques to achieve high evasion rates against different antiviruses. In this paper, we introduce multiple techniques consists of four stages that aid a malware; to avoid anti-malware tools, these techniques were mainly developed to provide a high evasion rate against anti-malware systems via dynamic analysis techniques. The evasion rate success of our samples were tested through (Kaspersky, Virustotal and Virusscan), then the result of our experiment were compared with other obfuscation techniques to stand on the success level of the experiment as well as extracting the strength and weakness points for any possible future works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahawer, D., Nagaraju, A.: Metamorphic malware detection using base malware identification method. Secur. Commun. Netw. 7(11), 1719–1733 (2013)

    Article  Google Scholar 

  2. Nai Fovino, I., Carcano, A., Masera, M., Trombetta, A.: An experimental investigation of malware attacks on SCADA systems. Int. J. Crit. Infrastruct. Prot. 2(4), 139–145 (2009)

    Article  Google Scholar 

  3. Mawgoud, A.A., Taha, M.H.N., Khalifa, N.E..M.: Security Threats of Social Internet of Things in the Higher Education Environment, pp. 151–171. Springer, Cham (2019)

    Google Scholar 

  4. Xu, D., Yu, C.: Automatic discovery of malware signature for anti-virus cloud computing. Adv. Mater. Res. 846–847, 1640–1643 (2013)

    Article  Google Scholar 

  5. Kumar, A., Goyal, S.: Advance dynamic malware analysis using Api hooking. Int. J. Eng. Comput. Sci. 5(3) (2016)

    Google Scholar 

  6. Khaja, M., Seo, J., McArthur, J.: Optimizing BIM Metadata Manipulation Using Parametric Tools. Procedia Engineering 145, 259–266 (2016)

    Article  Google Scholar 

  7. Tahir, R.: A study on malware and malware detection techniques. Int. J. Educ. Manag. Eng. 8(2), 20–30 (2018)

    Article  Google Scholar 

  8. El Karadawy, A.I., Mawgoud, A.A., Rady, H.M.: An empirical analysis on load balancing and service broker techniques using cloud analyst simulator. In: International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), pp. 27–32. IEEE, Aswan, Egypt (2020)

    Google Scholar 

  9. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant permission identification for machine-learning-based android malware detection. IEEE Trans. Industr. Inf. 14(7), 3216–3225 (2018)

    Google Scholar 

  10. Li, Q., Larsen, C., van der Horst, T.: IPv6: a catalyst and evasion tool for botnets and malware delivery networks. Computer 46(5), 76–82 (2013)

    Article  Google Scholar 

  11. Suk, J., Kim, S., Lee, D.: Analysis of virtualization obfuscated executable files and implementation of automatic analysis tool. J. Korea Inst. Inform. Secur. Cryptol. 23(4), 709–720 (2013)

    Article  Google Scholar 

  12. MaHussein, D.M.E.D.M., Taha, M.H., Khalifa, N.E.M.: A blockchain technology evolution between business process management (BPM) and Internet-of-Things (IoT). Int. J. Advanc. Comput. Sci. Appl. 9, 442–450 (2018)

    Google Scholar 

  13. Malhotra, A., Bajaj, K.: A survey on various malware detection techniques on mobile platform. Int. J. Comput. Appl. 139(5), 15–20 (2016)

    Google Scholar 

  14. Kritzinger, E., Smith, E.: Information security management: an information security retrieval and awareness model for industry. Comput. Secur. 27(5–6), 224–231 (2008)

    Article  Google Scholar 

  15. Kong, D., Tian, D., Pan, Q., Liu, P., Wu, D.: Semantic aware attribution analysis of remote exploits. Secur. Commun. Netw. 6(7), 818–832 (2013)

    Google Scholar 

  16. Khalifa N.M., Taha M.H.N., Saroit, I.A.: A secure energy efficient schema for wireless multimedia sensor networks. CiiT Int. J. Wirel. Commun. 5(6) (2013)

    Google Scholar 

  17. Goh, D., Kim, H.: A study on malware clustering technique using API call sequence and locality sensitive hashing. J. Korea Inst. Inform. Secur. Cryptol. 27(1), 91–101 (2017)

    Article  Google Scholar 

  18. Pandey, S., Agarwal, A.K.: Remainder quotient double hashing technique in closed hashing search process. In: Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) (2019, March)

    Google Scholar 

  19. Luckett, P., McDonald, J., Glisson, W., Benton, R., Dawson, J., Doyle, B.: Identifying stealth malware using CPU power consumption and learning algorithms. J. Comput. Secur. 26(5), 589–613 (2018)

    Article  Google Scholar 

  20. Kumar, P.: Computer virus prevention & anti-virus strategy. Sahara Arts & Management Academy Series (2008)

    Google Scholar 

  21. Yoshioka, K., Inoue, D., Eto, M., Hoshizawa, Y., Nogawa, H., Nakao, K.: Malware sandbox analysis for secure observation of vulnerability exploitation. IEICE Trans. Inform. Syst. E92-D(5), 955–966 (2009)

    Google Scholar 

  22. Pektaş, A., Acarman, T.: A dynamic malware analyzer against virtual machine aware malicious software. Secur. Commun. Netw. 7(12), 2245–2257 (2013)

    Article  Google Scholar 

  23. Joo, J., Shin, I., Kim, M.: Efficient methods to trigger adversarial behaviors from malware during virtual execution in sandbox. Int. J. Secur. Appl. 9(1), 369–376 (2015)

    Google Scholar 

  24. Maestre Vidal, J., Sotelo Monge, M., Monterrubio, S.: EsPADA: enhanced payload analyzer for malware detection robust against adversarial threats. Fut. Gene. Comput. Syst. 104, 159–173 (2019)

    Article  Google Scholar 

  25. Iwamoto, K., Isaki, K.: A method for shellcode extraction from malicious document files using entropy and emulation. Int. J.Eng. Technol. 8(2), 101–106 (2016)

    Article  Google Scholar 

  26. Zakeri, M., Faraji Daneshgar, F., Abbaspour, M.: A static heuristic method to detecting malware targets. Secur. Commun. Netw. 8(17), 3015–3027 (2015)

    Article  Google Scholar 

  27. Kruegel, C.: Full system emulation: achieving successful automated dynamic analysis of evasive malware. In: Proc. BlackHat USA Security Conference, 1–7 August 2014

    Google Scholar 

  28. Zhong, M., Tang, Z., Li, H., Zhang, J.: Detection of suspicious communication behavior of one program based on method of difference contrast. J. Comput. Appl. 30(1), 210–212 (2010)

    Google Scholar 

  29. Mawgoud, A.A.: A survey on ad-hoc cloud computing challenges. In: International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), pp. 14–19. IEEE (2020)

    Google Scholar 

  30. Eskandari, M., Raesi, H.: Frequent sub-graph mining for intelligent malware detection. Secur. Commun. Netw. 7(11), 1872–1886 (2014)

    Article  Google Scholar 

  31. Barabas, M., Homoliak, I., Drozd, M., Hanacek, P.: Automated malware detection based on novel network behavioral signatures. Int. J. Eng. Technol. 249–253 (2013)

    Google Scholar 

  32. Zatloukal, F., Znoj, J.: Malware detection based on multiple PE headers identification and optimization for specific types of files. J. Adv. Eng. Comput. 1(2), 153 (2017)

    Article  Google Scholar 

  33. Tomasi, G., van den Berg, F., Andersson, C.: Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. 18(5), 231–241 (2004)

    Article  Google Scholar 

  34. Vinod, P., Viswalakshmi, P.: Empirical evaluation of a system call-based android malware detector. Arab. J. Sci. Eng. 43(12), 6751–6770 (2017)

    Article  Google Scholar 

  35. Saeed, I.A., Selamat, A., Abuagoub, A.M.A.: A survey on malware and malware detection systems. Int. J. Comput. Appl. 67(16), 25–31 (2013)

    Google Scholar 

  36. Mawgoud, A.A., Ali, I.: Statistical insights and fraud techniques for telecommunications sector in Egypt. In: International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), pp. 143–150. IEEE (2020)

    Google Scholar 

  37. Mawgoud A.A., Taha, M.H.N., El Deen, N., Khalifa N.E.M.: Cyber security risks in MENA region: threats, challenges and countermeasures. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 912–921. Springer, Cham (2020)

    Google Scholar 

  38. Ismail, I., Marsono, M., Khammas, B., Nor, S.: Incorporating known malware signatures to classify new malware variants in network traffic. Int. J. Netw. Manag. 25(6), 471–489 (2015)

    Article  Google Scholar 

  39. Toddcullumresearch.com: Portable executable file corruption preventing malware from running—Todd Cullum Research (2019). https://toddcullumresearch.com/2017/07/16/portableexecutable-file-corruption/ Accessed 10 June 2019

  40. Blackhat.com (2019). https://www.blackhat.com/docs/us-17/thursday/us-17-Anderson-Bot-VsBot-Evading-Machine-Learning-Malware-Detection-wp.pdf. Accessed 9 Apr 2019

  41. Ye, Y., Wang, D., Li, T., Ye, D., Jiang, Q.: An intelligent PE malware detection system based on association mining. J. Comput. Virol. 4(4), 323–334 (2008)

    Article  Google Scholar 

  42. Xu, W., Zhang, F., Zhu, S.: The power of obfuscation techniques in malicious JavaScript code: a measurement study, 9–16 (2012). https://doi.org/10.1109/malware.2012.6461

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Mawgoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

A. Mawgoud, A., Rady, H.M., Tawfik, B.S. (2021). A Malware Obfuscation AI Technique to Evade Antivirus Detection in Counter Forensic Domain. In: Hassanien, AE., Taha, M.H.N., Khalifa, N.E.M. (eds) Enabling AI Applications in Data Science. Studies in Computational Intelligence, vol 911. Springer, Cham. https://doi.org/10.1007/978-3-030-52067-0_27

Download citation

Publish with us

Policies and ethics