Skip to main content

Determining Variance-Covariance Matrices for Terrestrial Laser Scans: A Case Study of the Arch Dam Kops

  • Conference paper
  • First Online:
Contributions to International Conferences on Engineering Surveying

Abstract

Deformation and displacement monitoring of arch dams is usually conducted by measurement methods that gained widespread acceptance. Mostly pointwise measurements acquired within different epochs serve as the basis for deformation analysis. The uncertainty information of these observations is generally established. When referring to surface-based deformation monitoring, terrestrial laser scanning (TLS) is intensively hyped up. Nevertheless, current knowledge about stochastic modelling of TLS observations is scarce and very often reduced to a diagonal variance-covariance matrix (VCM). This neglects the exiting correlations within the point clouds. Aiming to fill the gap, this paper shows one possibility of obtaining a fully populated variance-covariance matrix using the elementary error model (EEM). Previous publications on this topic described the application of EEM for the Leica HDS 7000 laser scanner and showed results on simulated data for laboratory objects. Within this paper instrumental errors of the same scanner are modeled differently, according to recent work. A real scan of the arch dam Kops in Austria highlights influences on the variances, covariances and correlations of points within the point cloud for two instrument error models. Findings show that the model choice does not bring a notable change in the error of positions, but influences the correlation coefficients up to a level of Δρ = 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICOLD (2018) Dam Surveillance Guide, Bulletin 158, pp. 107–108.

    Google Scholar 

  2. Heunecke, O.; Kuhlmann, H.; Welsch, W.; Eichhorn, A.; Neuner, H. (2013) Handbuch Ingenieurgeodäsie-Auswertung geodätischer Überwachungsmessungenm, Chapter 15, in Möser, M.; Müller, G.; Schlemmer, H. (Ed.) 2nd edition, Wichmann, Berlin, Germany.

    Google Scholar 

  3. Wunderlich, T.; Niemeier, W.; Wujanz, D.; Holst, C.; Neitzel, F.; Kuhlmann, H. (2016) Areal Deformation Analysis from TLS Point Clouds–the Challenge, Allgemeine Vermessungsnachrichten, Vol. 123, no. 11–12.

    Google Scholar 

  4. Kuhlmann, H.; Holst, C. (2018) Flächenhafte Abtastung mit Laserscanning-Messtechnik, flächenhafte Modellierung und aktuelle Entwicklungen im Bereich des terrestrischen Laserscanning, pp. 168–207. In: Ingenieurgeodäsie-Handbuch der Geodäsie, ed. W. Schwarz, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  5. Gordon, S.J.; Lichti, D.D. (2007) Modeling Terrestrial Laser Scanner Data for Precise Structural Deformation Measurement, Journal of Surveying Engineering Vol. 133, No.22.

    Google Scholar 

  6. Grimm-Pitzinger, A.; Rudig, S. (2005) Laserscannerdaten für flächenhafte Deformationsanalysen, Proceedings of 13th Internationale Geodätischen Woche, Obergurgl, Austria.

    Google Scholar 

  7. Alba, M.; L. Fregonese, F. Prandi, M. Scaioni, P. Valgoi (2006) Structural Monitoring Of A Large Dam By Terrestrial Laser Scanning, IAPRS & SIS, 36(5), pp. 6–12.

    Google Scholar 

  8. Heine, E.; Reiner, H.; Weinold, T. (2009) Deformationsmessungen mit terrestrischen Laserscannern am Beispiel der Kops Staumauer, Chesi G., Weinold T. (Ed.): 15. Internationale Geodätische Woche Obergurgl, Herbert Wichmann Verlag.

    Google Scholar 

  9. Eling, D. (2009) Terrestrisches Laserscanning für die Bauwerksüberwachung, In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 282.

    Google Scholar 

  10. Neuner, H.; Holst, C.; Kuhlmann, H. (2016) Overview on Current Modelling Strategies of Point Clouds for Deformation Analysis, Allgemeine Vermessungsnachrichten, Vol. 123, no. 11–12.

    Google Scholar 

  11. Kauker, S. & Schwieger, V. (2017) A synthetic covariance matrix for monitoring by terrestrial laser scanning. Journal of Applied Geodesy, 11(2), pp. 77–87.

    Google Scholar 

  12. Kauker, S.; Harmening, C.; Neuner, H.; Schwieger, V. (2017) Modellierung und Auswirkung von Korrelationen bei der Schätzung von Deformationsparametern beim terrestrischen Laserscanning. In: Lienhart, W. [Ed.], Proceedings of 18. Internationalen Ingenieurvermessungskurs, Graz, 2017, Wichmann Verlag, Berlin, pp. 321–336.

    Google Scholar 

  13. Ogundare, J. O. (2016) Precision Surveying: The Principles and Geoamtics Practice, John Wiley & Sons, Inc., New Jersey, pp. 300–301.

    Google Scholar 

  14. Niemeier, W. (2008) Ausgleichungsrechnung, 2nd edition, Walter de Gruyter, Berlin, Germany.

    Google Scholar 

  15. Harmening, C.; Neuner, H. (2015) Continous modelling of point clouds by means of freefrom surfaces, Österreichische Zeitschrift für Vermessung und Geoinformation (VGI),103.

    Google Scholar 

  16. Harmening, C.; Kauker, S.; Neuner, H-B.; Schwieger, V. (2016) Terrestrial Laserscanning-Modeling of Correlations and Point Clouds for Deformation Analysis, FIG Working Week 2–6 May 2016 Christchurch, New Zealand.

    Google Scholar 

  17. Zhao, X.; Kermarrec, G.; Kargoll, B.; Alkhatib, H.; Neumann, I. (2019) Influence of the simplified stochastic model of TLS measurements on geometry-based deformation analysis. J. of Applied Geodesy, 13(3), pp. 199–214.

    Google Scholar 

  18. Jurek, T.; Kuhlmann, H. & Holst, C. (2017) Impact of spatial correlations on the surface estimation based on terrestrial laser scanning. J. of Applied Geodesy, 11(3), pp. 143–155.

    Google Scholar 

  19. Schwieger, V. (1999) Ein Elementarfehlermodell für GPS Überwachungsmessungen, Schriftenreihe der Fachrichtung Vermessungswesen der Universität Hannover, Vol. 231.

    Google Scholar 

  20. Kirkup, L.; Frenkel, B. (2006) An Introduction to Uncertainty in Measurement: Using the GUM. Cambridge University Press.

    Google Scholar 

  21. Metropolis, N.; Ulam, S. (1949) The Monte Carlo Method. Journal of the Americal Statistical Association, Vol. 44, No. 247, pp. 335–341.

    Google Scholar 

  22. Soudarissanane, S. S. (2016) The Geometry of Terrestrial Laser Scanning-identification of errors, modeling and mitigation of scanning geometry, retrieved from: repository.tudelft.nl, last accessed on 20.01.2020.

    Google Scholar 

  23. Zámečníková, M.; Neuner, H.; Pegritz, S.; Sonnleitner, R. (2015) Investigation on the influence of the incidence angle on the reflectorless distance measurement of a terrestrial laser scanner. Österr. Z. Vermess. Geoinform 2015, 103, 208–218

    Google Scholar 

  24. Leica Geosystem AG (2011) Datasheet HDS 7000 Laser Scanner. Retrieved from http://w3.leica-geosystems.com/downloads123/hds/hds/HDS7000/brochures-datasheet/HDS7000_DAT_en.pdf, last accessed on 20.01.2020.

  25. Neitzel, F. (2006) Gemeinsame Bestimmung von Ziel-, Kippachsfehler und Exzentrizität der Zielachse am Beispiel des Zoller + FröhlichImager 5003, Luhmann/Müller(Ed.)–Photogrammetrie-Laserscanning-Optische 3D-Messtechnik, Proceedings oft he Oldenburger 3D-Tage 2006, Wichman, Berlin, Germany.

    Google Scholar 

  26. Strahlberg, C (1997) Eine vektorielle Darstellung des Einflusses von Ziel-und Kippachsfehler auf die Winkelmessung, Zeitschrift für Vermessungswesen, Vol. 5/1997, pp. 225–235.

    Google Scholar 

  27. Neitzel, F. (2006b) Untersuchung des Achssystems und des Taumelfehlers terrestrischer Laserscanner mit tachymetrischem Messprinzip. In: Proceedings of the 72. DVW-Seminar Terrestrial Laserscanning 2006 in Fulda, Volume 51, Wißner, Augsburg, pp. 15–34.

    Google Scholar 

  28. Muralikrishnan, B.; Ferrucci, M.; Sawyer, D.; Gerner, G.; Lee, V.; Blackburn, C.; Phillips, S.; Petrov, P.; Yakovlev, Y.; Astrelin, A.; Milligan, S.; Palmateer, J. (2015) Volumetric Performance Evaluation of a Laser Scanner Based on Geometric Error Model, Precise Engineering, Vol. 40, p. 139–150.

    Google Scholar 

  29. Medić, T.; Holst, C.; Kuhlmann, H. (2017) Towards System Calibration of Panoramic Laser Scanners from a Single Station, Sensors, Vol. 17, No. 5.

    Google Scholar 

  30. Medić, T.; Holst, C.; Kuhlmann, H. (2019) Sensitivity Analysis and Minimal Measurement Geometry for Target-Based Calibration of High-End Panoramic Terrestrial Laser Scanners Remote Sensing, Vol. 11, no. 1519.

    Google Scholar 

  31. Holst, C.; Medić, T.; Kuhlmann, H. (2018). Dealing with systematic laser scanner errors due to misalignment at area-based deformation analyses. J. of Applied Geodesy, 12(2), pp. 169–185.

    Google Scholar 

  32. Holst, C.; Medić, T.; Blome, M.; Kuhlmann, H. (2019) TLS-Kalibrierung: in-situ und/oder a priori?, 184th DVW-Seminar, Terrestrisches Laserscanning 2019, Fulda, Germany.

    Google Scholar 

  33. Chow, J. C. K.; Lichti, D. D.; Glennie, C.; Hartzell, P. (2013) Improvements to and Comparison of Static Terrestial LiDAR Self-Calibration Methods Sensors 2013, 13.

    Google Scholar 

  34. Ganser O. (1975) Staumauer Kops, Anlage der Drainagebohrungen, Auswirkung Dieser Massnahmen auf die Höhe des Bergwasserspiegels und die Grösse des Sohlenwasserdruckes. In: 12. Talsperrenkongreß in Mexiko 1976. Die Talsperren Österreichs, vol 22. Springer, Vienna, Austria.

    Google Scholar 

  35. Illwerke vkw AG (2020) Website: https://www.illwerkevkw.at/kopssee.htm, last accseed on 22.01.2020.

  36. 36. Suchocki, C. (2020) Comparison of Time-of-Flight and Phase-Shift TLS Intensity Data for the Diagnostics Measurements of Buildings. In: Materials 2020, 13, pp. 353.

    Google Scholar 

  37. Girardeau-Montaut, D. (2019) Point processing with Cloud Compare, Presentation of Point Cloud Processing Workshop 2019 Stuttgart, retrieved from: pcp2019.ifp.uni-stuttgart.de/presentations/04-CloudCompare_PCP_2019_public.pdf, last accessed 24.01.2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Kerekes .

Editor information

Editors and Affiliations

Ethics declarations

The authors cordially thank DFG (Deutsche Forschungsgemeinschaft) for funding the investigations of the IMKAD II Project under the sign SCHW 838/7-3.

We also want to express our gratitude to Illwerke vkv AG, especially to Dr.-Ing. Ralf Laufer for allowing and supporting the measurement campaign in 2019.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kerekes, G., Schwieger, V. (2021). Determining Variance-Covariance Matrices for Terrestrial Laser Scans: A Case Study of the Arch Dam Kops. In: Kopáčik, A., Kyrinovič, P., Erdélyi, J., Paar, R., Marendić, A. (eds) Contributions to International Conferences on Engineering Surveying. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-51953-7_5

Download citation

Publish with us

Policies and ethics