Skip to main content

Thin Layer of Cyclodextrins on Graphene—MD Simulations

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

  • 488 Accesses

Abstract

The molecular dynamics of β-cyclodextrins on graphene was investigated using the computer simulation technique. The β-cyclodextrin molecules spread over the graphene sheet but they do not adhere to the single carbon atoms of graphene. Instead, they are mobile and diffuse over the graphene surface. The dynamics of β-cyclodextrin molecules on graphene have been studied, for a range of temperatures and densities. Several important observables were calculated and analyzed in our computer simulation experiment: mean square displacement, translational diffusion coefficient, and Lindemann index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawal AT (2019) Graphene-based nano composites and their applications. A review. Biosens Bioelectron 141(1–17): 111384. https://doi.org/10.1016/j.bios.2019.111384

  2. Nandanapalli KR, Mudusu D, Lee S (2019) Functionalization of graphene layers and advancements in device applications. Carbon 152:954–985. https://doi.org/10.1016/j.carbon.2019.06.081

  3. Bahiraei M, Heshmatian S (2019) Graphene family nanofluids: a critical review and future research directions. Energy Convers Manag 196:1222–1256. https://doi.org/10.1016/j.enconman.2019.06.076

  4. Wang J, Mu X, Sun M, Mu T (2019) Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl Mater Today 16:1–20. https://doi.org/10.1016/j.apmt.2019.03.006

  5. Iqbal MZ, Rehman AU, Siddique S (2019) Prospects and challenges of graphene based fuel cells. J Energy Chem 39:217–234. https://doi.org/10.1016/j.jechem.2019.02.009

  6. Sun C, Liu M, Bai B (2019) Molecular simulations on graphene-based membranes. Carbon 153:481–494. https://doi.org/10.1016/j.carbon.2019.07.052

  7. Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications, Compos Sci Technol 179:10–40. https://doi.org/10.1016/j.compscitech.2019.04.028

  8. Gburski Z, Górny K, Raczyński P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. https://doi.org/10.1016/j.ssc.2009.12.005

  9. Li G, Xiao P, Hou S, Huang Y (2019) Graphene based self-healing materials. Carbon 146:371–387. https://doi.org/10.1016/j.carbon.2019.02.011

  10. Fernandez MA, Silva F, Vico RV, de Rossi RH (2019) Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 480:12–34. https://doi.org/10.1016/j.carres.2019.05.006

  11. Dawid A, Górny K, Gburski Z (2015) The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C-60(OH)(24) isomers: DFT study. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1993–1997. https://doi.org/10.1016/j.saa.2014.08.023

  12. Szente L, Fenyvesi E (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28:479–492. https://doi.org/10.1007/s11224-016-0884-9

  13. Roux M, Auzely-Velty R, Djedaini-Pilard F, Perly B (2002) Cyclodextrin-induced lipid lateral separation in DMPC membranes: 2H nuclear magnetic resonance study. Biophys J 82:813–822. https://doi.org/10.1016/s0006-3495(02)75443-x

  14. Grachev MK, Malenkovskaya MA, Vasyanina LK (2015) NMR study of inclusion complexes formation between amphiphilic dimeric β-cyclodextrin derivative and some pharmacologically important compounds. J Incl Phenom Macrocycl Chem 83:209–214. https://doi.org/10.1007/s10847-015-0548-1

    Article  Google Scholar 

  15. Dawid A, Gburski Z (2003) Rayleigh light scattering in fullerene covered by a spherical argon film—a molecular dynamics study. J Phys Condens Matter 15:2399–2405. https://doi.org/10.1088/0953-8984/15/14/315

    Article  ADS  Google Scholar 

  16. Litz JP, Thakkar N, Portet T, Keller SL (2016) Depletion with cyclodextrin reveals two populations of cholesterol in model lipid membranes. Biophys J 110:635–645. https://doi.org/10.1016/j.bpj.2015.11.021

  17. Joset A, Grammenos A, Hoebeke M, Leyh B (2015) Investigation of the interaction between a β-cyclodextrin and DMPC liposomes: a small angle neutron scattering study. J Incl Phenom Macrocycl Chem 83:227–238. https://doi.org/10.1007/s10847-015-0558-z

  18. Gburski Z, Gray CG, Sullivan DE (1983) Information theory of line shape in collision-induced absorption. Chem Phys Lett 100:383–386. https://doi.org/10.1016/0009-2614(83)80292-9

  19. Mascetti J, Castano S, Cavagnat D, Desbat B (2008) Organization of β-cyclodextrin under pure cholesterol, DMPC, or DMPG and mixed cholesterol/phospholipid monolayers. Langmuir 24:9616–9622. https://doi.org/10.1021/la8004294

  20. Tsamaloukas A, Szadkowska H, Slotte PJ, Heerklotz H (2005) Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys J 89:1109–1119. https://doi.org/10.1529/biophysj.105.061846

  21. Gwizdała W, Górny K, Gburski Z (2008) Molecular dynamics and dielectric loss in 4-cyano-4-n-pentylbiphenyl (5CB) mesogene film surrounding carbon nanotube—computer simulation. J Mol Struct 887:148–151. https://doi.org/10.1016/j.molstruc.2007.12.045

  22. Loftsson T, Vogensen SB, Brewster ME, Konráðsdóttir F (2007) Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci 96:2532–2546. https://doi.org/10.1002/jps.20992

  23. Puglisi G, Fresta M, Ventura CA (1996) Interaction of natural and modified β-cyclodextrins with a biological membrane model of dipalmitoylphosphatidylcholine. J Colloid Interface Sci 180:542–547. https://doi.org/10.1006/jcis.1996.0335

  24. Piatek A, Dawid A, Gburski Z (2011) The properties of small fullerenol cluster (C-60(OH)(24))(7): computer simulation. Spectrochim Acta Part A Mol Biomol Spectrosc 79:819–823. https://doi.org/10.1016/j.saa.2010.08.059

  25. Menezes P, Andrade T, Frank LA, Souza EPBS, Trindade GG, Trindade IAS, Serafinni MS, Guterres SS, Araujo AA (2019) Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 559:312–328. https://doi.org/10.1016/j.ijpharm.2019.01.041

  26. Dendzik Z, Górny K, Gburski Z (2009) Cooperative dipolar relaxation of a glycerol molecular cluster in nanoscale confinement—a computer simulation study. J Phys Condensed Matter 21:425101 (7 pp.). https://doi.org/10.1088/0953-8984/21/42/425101./l

  27. Hammoud Z, Khreich, N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76. https://doi.org/10.1016/j.ijpharm.2019.03.063

  28. Makieła D, Janus-Zygmunt I, Górny K, Gburski Z (2019) The dynamics of beta-cyclodextrin molecules on graphene sheet. A molecular dynamics simulation study. J Mol Liq 288(1–7):110974. https://doi.org/10.1016/j.molliq.2019.110974

  29. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  30. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. https://doi.org/10.1002/jcc.21287

    Article  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  32. Brünger A, Brooks CL, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105:495–500. https://doi.org/10.1016/0009-2614(84)80098-6

Download references

Acknowledgements

We would like to thank the PL Grid supercomputers network for sharing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makieła, D., Gburski, Z. (2021). Thin Layer of Cyclodextrins on Graphene—MD Simulations. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_20

Download citation

Publish with us

Policies and ethics