Skip to main content

Femtosecond Laser Surface Micro- and Nanotexturing of Metals, Alloys, and Ceramics Perspective for Biomedical Applications

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Abstract

Direct surface modification of dental implants based on zirconium (Zr), Ti–Zr alloys, and zirconia ceramics has been achieved by the irradiation of their surfaces with Ti:sapphire femtosecond laser. Fundamental (800 nm) and third (266 nm) harmonics of femtosecond laser have been used for the surface treatment. Laser treatment is one of the effective techniques of micro- and nanotexturing of the dental implant surfaces that can improve the adhesion of living tissues. The peculiarities of morphology of laser-treated surfaces have been studied using scanning electron microscopy. It has been revealed that efficient structuring of implant specimens has been observed at a higher irradiation power density at a higher scanning speed. An increase of the laser power density also contributes to the uniformity of the structure within the laser beam spot on the surface, which minimizes the inhomogeneity at the junctures of strips of consecutive laser beam passes. The wettability of laser-treated specimens is essentially dependent on preliminary treatment before femtosecond laser processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6(10):3824–3846. https://doi.org/10.1016/j.actbio.2010.04.001

    Article  Google Scholar 

  2. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  Google Scholar 

  3. Norman JJ, Desai TA (2006) Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng 34(1):89–101. https://doi.org/10.1007/s10439-005-9005-4

    Article  Google Scholar 

  4. Vorobyev AY, Guo C (2007) Femtosecond laser structuring of titanium implants. Appl Surf Sci 253(17):7272–7280. https://doi.org/10.1016/j.apsusc.2007.03.006

  5. Erdoǧan M, Öktem B, Kalaycıoǧlu H, Yavaş S, Mukhopadhyay PK, Eken K, Özgören K, Aykaç Y, Tazebay UH, Ilday FÖ (2011) Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19(11):10986–10996. https://doi.org/10.1364/OE.19.010986

    Article  ADS  Google Scholar 

  6. Vorobyev AY, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon Rev 7:385–407. https://doi.org/10.1002/lpor.201200017

    Article  ADS  Google Scholar 

  7. Öktem B, Pavlov I, Ilday S, Kalaycioglu H, Rybak A, Yavas S, Erdogan M, Ilday Ilday FÖ (2013) Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photon 7:897–901. https://doi.org/10.1038/nphoton.2013.272

    Article  ADS  Google Scholar 

  8. Fadeeva E, Schlie S, Koch J, Chichkov BN (2010) Selective cell control by surface structuring for orthopedic applications. J Adhesion Sci Technol 24:2257–2270. https://doi.org/10.1163/016942410X508000

    Article  Google Scholar 

  9. Trtica M, Batani D, Redaelli R, Limpouch J, Kmetik V, Ciganovic J, Stasic J, Gakovic B, Momcilovic M (2013) Titanium surface modification using femtosecond laser with 1013–1015 W/cm2 intensity in vacuum. Laser Part Beams 31(1):29–36. https://doi.org/10.1017/S0263034612000924

  10. Jeong YH, Choe HC, Brantley WA (2011) Nanostructured thin film formation on femtosecond laser-textured Ti–35Nb–xZr alloy for biomedical applications. Thin Solid Films 519(15):4668–4675. https://doi.org/10.1016/j.tsf.2011.01.014

    Article  ADS  Google Scholar 

  11. Ionescu AC, Brambilla E, Azzola F, Ottobelli M, Pellegrini G, Francetti LA (2018) Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoSONE 13(9):e0202262. https://doi.org/10.1371/journal.pone.0202262

  12. Gnilitskyi I, Pogorielov M, Viter R, Ferraria AM, Carapeto AP, Oleshko O, Orazi L, Mishchenko O (2019) Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures. Nanomed Nanotechnol Biol Med 21:102036. https://doi.org/10.1016/j.nano.2019.102036

  13. Gnilitskyi I, Derrien TJ-Y, Levy Y, Bugakova NM, Mocek T, Orazi L (2017) High-speed, highly regular femtosecond laser printing of laser-induced periodic surface structures on metals: physical origin of the regularity. Sci Rep 7:8485. https://doi.org/10.1038/s41598-017-08788-z

    Article  ADS  Google Scholar 

  14. Papadopoulou EL, Samara A, Barberoglou M, Manousaki A, Pagakis SN, Anastasiadou E, Fotakis C, Stratakis E (2010) Silicon scaffolds promoting three-dimensional neuronal web of cytoplasmic processes. Tissue Eng C Methods 16:497–502. https://doi.org/10.1089/ten.TEC.2009.0216

    Article  Google Scholar 

  15. Poosti M, Jahanbin A, Mahdavi P, Mehrnoush S (2012) Porcelain conditioning with Nd:YAG and Er:YAG laser for bracket bonding in orthodontics. Lasers Med Sci 27(2):321–324. https://doi.org/10.1007/s10103-010-0878-6

    Article  Google Scholar 

  16. Mosharraf R, Mansour R, Savabi O, Ashtiani AH (2011) Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J Adv Prosthodont 3(4):221–228. https://doi.org/10.4047/jap.2011.3.4.221

    Article  Google Scholar 

  17. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T (2013) Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 28(1):259–266. https://doi.org/10.1007/s10103-012-1136-x

    Article  Google Scholar 

  18. Erdur EA, Basciftci FA (2015) Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces. Lasers Surg Med 47(6):512–519. https://doi.org/10.1002/lsm.22371

    Article  Google Scholar 

  19. Akpinar YZ, Irgin C, Yavuz T, Aslan MA, Kilic HS, Usumez A (2015) Effect of femtosecond laser treatment on the shear bond strength of a metal bracket to prepared porcelain surface. Photomed Laser Surg 33(4):206–212. https://doi.org/10.1089/pho.2014.3791

    Article  Google Scholar 

  20. Vicente M, Gomes AL, Montero J, Rosel E, Seoane V, Albaladejo A (2016) Influence of cyclic loading on the adhesive effectiveness of resin-zirconia interface after femtosecond laser irradiation and conventional surface treatments. Lasers Surg Med 48(1):36–44. https://doi.org/10.1002/lsm.22442

    Article  Google Scholar 

  21. Vicente Prieto M, Gomes ALC, Montero Martín J, Alvarado Lorenzo A, Seoane Mato V, Al-baladejo Martínez A (2016) The effect of femtosecond laser treatment on the effectiveness of resin-zirconia adhesive: an in vitro study. J Lasers Med Sci 7(4):214–219. https://doi.org/10.15171/jlms.2016.38

    Article  Google Scholar 

  22. Calvo-Guirado Jl, Ramos-Oltra ML, Negri B, Delgado-Ruíz RA, Ramirez-Fernández P, Mate-Sánchez JE, Abooud M, Gargallo Albiol J, Satorres Nieto M, Romanos G (2013) Osseointegration of zirconia dental implants modified by femtosecond laser vs. zirconia implants in healed bone: a histomorphometric study in dogs with three-month follow-up. J. Osseointegr 5(3):39–44. https://doi.org/10.23805/jo.2013.05.03.01

  23. García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Mendoza-Yero O, Doñate-Buendía C, Montero J, Albaladejo A (2017) Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS ONE 12(10):e0186796. https://doi.org/10.1371/journal.pone.0186796

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from Ministry of Education and Science of Ukraine, project No. 19BF051-04, and technical support of Femtosecond Laser Center for Collective Use of NAS of Ukraine. Authors appreciate Dr. Teselko P. for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Berezovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitruk, I.M. et al. (2021). Femtosecond Laser Surface Micro- and Nanotexturing of Metals, Alloys, and Ceramics Perspective for Biomedical Applications. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_19

Download citation

Publish with us

Policies and ethics