Skip to main content

New Effective Filter in the Spatial Domain for Speckle Noise Reduction

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

  • 505 Accesses

Abstract

In this paper, we present a new method for filtering phase fringe patterns in the spatial domain by Chebyshev polynomials of the first kind. With numerical experiments, we determined the optimal number of Chebyshev polynomials for representing the continuous components of the phase map as the sum of polynomials. The accuracy of the proposed filter was determined by filtering a series of difference phase maps of the deformation of a rough object obtained by a computer model. The result was compared with a filter working in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poon TC (Ed) (2006) Digital holography and three-dimensional display: principles and applications. Springer Science & Business Media

    Google Scholar 

  2. Picart P (Ed) (2015) New techniques in digital holography. Wiley

    Google Scholar 

  3. Goodman JW (2007) Speckle phenomena in optics: theory and applications. Roberts and Company Publishers

    Google Scholar 

  4. Poittevin J, Picart P, Faure C, Gautier F, Pézerat C (2015) Multi-point vibrometer based on high-speed digital in-line holography. Appl Opt 54(11):3185–3196

    Article  ADS  Google Scholar 

  5. Poittevin J, Picart P, Gautier F, Pezerat C (2015) Quality assessment of combined quantization-shot-noise-induced decorrelation noise in high-speed digital holographic metrology. Opt Express 23(24):30917–30932

    Article  ADS  Google Scholar 

  6. Montresor S, Picart P (2016) Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt Express 24(13):14322–14343

    Article  ADS  Google Scholar 

  7. Uzan A, Rivenson Y, Stern A (2013) Speckle denoising in digital holography by nonlocal means filtering. Appl Opt 52(1):A195–A200

    Article  ADS  Google Scholar 

  8. Nomura T, Okamura M, Nitanai E, Numata T (2008) Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl Opt 47(19):D38–D43

    Article  Google Scholar 

  9. Park Y, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld MS (2009) Speckle-field digital holographic microscopy. Opt Express 17(15):12285–12292

    Article  ADS  Google Scholar 

  10. Hertwig S, Babovsky H, Kiessling A, Kowarschik R (2009). Reduction of speckles in digital holographic interferometry. In Fringe 2009 (pp 1–5). Springer, Berlin, Heidelberg

    Google Scholar 

  11. Rong L, Xiao W, Pan F, Liu S, Li R (2010) Speckle noise reduction in digital holography by use of multiple polarization holograms. Chin Opt Lett 8(7):653–655

    Article  Google Scholar 

  12. Dubois F, Joannes L, Legros JC (1999) Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Opt 38(34):7085–7094

    Article  ADS  Google Scholar 

  13. Aebischer HA, Waldner S (1999) A simple and effective method for filtering speckle-interferometric phase fringe patterns. Optics Commun 162(4–6):205–210

    Article  ADS  Google Scholar 

  14. Kemao Q, Soon SH, Asundi A (2003) Smoothing filters in phase-shifting interferometry. Opt Laser Technol 35(8):649–654

    Article  ADS  Google Scholar 

  15. Garcia-Sucerquia J, Ramírez JAH, Prieto DV (2005) Reduction of speckle noise in digital holography by using digital image processing. Optik-International Journal for Light and Electron Optics 116(1):44–48

    Article  Google Scholar 

  16. Mirza S, Kumar R, Shakher C (2005) Study of various preprocessing schemes and wavelet filters for speckle noise reduction in digital speckle pattern interferometric fringes. Opt Eng 44(4):045603

    Article  ADS  Google Scholar 

  17. Almoro P, Pedrini G, Osten W (2007) Aperture synthesis in phase retrieval using a volume-speckle field. Opt Lett 32(7):733–735

    Article  ADS  Google Scholar 

  18. Maycock J, Hennelly BM, McDonald JB, Frauel Y, Castro A, Javidi B, Naughton TJ (2007) Reduction of speckle in digital holography by discrete Fourier filtering. JOSA A 24(6):1617–1622

    Article  ADS  Google Scholar 

  19. Abramowitz M, Stegun IA (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing

    Google Scholar 

  20. Elliott D (1964) The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math Comput 18(86):274–284

    Article  MathSciNet  Google Scholar 

  21. Hernández MA (2001) Chebyshev’s approximation algorithms and applications. Comput Math Appl 41(3–4):433–445

    Article  MathSciNet  Google Scholar 

  22. Kotsiuba YM, Petrovska HA, Fitio VM, Bobitski YV (2016, September) Improving digital holographic interferogram quality by frequency filtering. In: 2016 IEEE 7th international conference on advanced optoelectronics and lasers (CAOL) (pp. 67-68). IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Petrovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotsiuba, Y., Fitio, V.M., Petrovska, H., Bobitski, Y.V. (2021). New Effective Filter in the Spatial Domain for Speckle Noise Reduction. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_14

Download citation

Publish with us

Policies and ethics