Skip to main content

Ballistic Transmission of the Relativistic Quasielectrons Through the Potential Barrier in the Alfa-T3 Model

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

  • 497 Accesses

Abstract

Some modern physical structures can be conveniently described using the so-called α-T3 model [1,2,3,4,5,6,7,8]. This model can rightly be attributed to a new class of objects that have received the name of Dirac materials in recent years [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raoux A, Morigi M, Fuchs J-N, Piéchon F, Montambaux G (2014) From Dia- to paramagnetic orbital susceptibility of massless fermions. Phys Rev Lett 112:026402

    Article  ADS  Google Scholar 

  2. Piéchon F, Fuchs J-N, Raoux A, and Montambaux G (2015) Tunable orbital susceptibility in α-T3 tight-binding models. J Phys Conf Ser 603:012001

    Google Scholar 

  3. Malcolm JD, Nicol EJ (2015) Magneto-optics of massless kane fermions: role of the flat band and unusual Berry phase. Phys Rev B 92:035118

    Article  ADS  Google Scholar 

  4. Illes E, Nicol EJ (2016) Magnetic properties of the α-T3 model: Magneto-optical conductivity and the Hofstadter butterfly. Phys Rev B 94:125435

    Article  ADS  Google Scholar 

  5. Kovács ÁD, Dávid G, Dóra B, Cserti J (2017) Frequencydependent magneto-optical conductivity in the generalized α-T3 model. Phys Rev B 95:035414

    Article  ADS  Google Scholar 

  6. Biswas T, Ghosh TK (2015) Magnetotransport properties of the α-T3 model. J Phys Condens Matter 28:95302

    Google Scholar 

  7. Illes E, Carbotte JP, Nicol EJ (2015) Hall quantization and optical conductivity evolution with variable Berry phase in the α-T3 model. Phys Rev B 92:245410

    Article  ADS  Google Scholar 

  8. Illes EE, Nicol EJ (2017) Klein tunneling in the alfa-T3 model. Phys Rev B 95:235432

    Google Scholar 

  9. Wehling TO, Black-Schaffer AM, Balatsky AV (2014) Dirac materials. Adv Phys 63:1

    Article  ADS  Google Scholar 

  10. Liu L, Li Y-X, Liu J (2012) Transport properties of Dirac electrons in graphene based double velocity-barrier structures in electric and magnetic fields. Phys Lett A 376:3342–3350

    Article  ADS  Google Scholar 

  11. Wang Y, Liu Y, Wang B (2013) Resonant tunneling and enhanced Goos-Hänchen shift in graphene double velocity barrier structure. Physica E 53:186–192

    Article  ADS  Google Scholar 

  12. Sun L, Fang C, Liang T (2013) Novel transport properties in monolayer graphene with velocity modulation. Chin PhysLett 30(4):047201

    ADS  Google Scholar 

  13. Raoux A, Polini M, Asgari R, Hamilton AR, Fasio R, MacDonald AH (2009) Velocity–modulation control of electron-wave propagation in graphene. arXiv:0912.2608v1 [cond-mat.mes-holl]

  14. Concha A, Tešanović Z (2010) Effect of a velocity barrier on the ballistic transport of Dirac fermions. Phys Rev B 82:033413

    Article  ADS  Google Scholar 

  15. Yuan JH, Zhang JJ, Zeng QJ, Zhang JP, Cheng Z (2011) Tunneling of Dirac fermions in graphene through a velocity barrier with modulated by magnetic fields. Phys B 406:4214–4220

    Article  ADS  Google Scholar 

  16. Krstajic PM, Vasilopoulos P (2011) Ballistic transport through graphene nanostructures of velocity and potential barriers. J Phys Condens Matter 23:000000(8 pp)

    Google Scholar 

  17. Korol AM, Medvid’ NV, Litvynchuk SI (2015) Transport properties of the Dirac-Weyl electrons through the graphene-based superlattice modulated by the Fermi velocity barriers. In: Proceedings in Physics, vol 167. Springer, pp 215–221

    Google Scholar 

  18. Korol AM, Medvid’ NV, Sokolenko AI (2018) Transmission of the relativistic fermions with the Pseudospin equal to one through the quasi-periodic barriers. Physica Status Solidi (B) Basic Res 255(9):1800046

    Google Scholar 

  19. Korol AM, Medvid’ NV, Sokolenko AI, Sokolenko IV (2019) Ballistic transmission of the Dirac quasielectrons through the barrier in the 3D topological insulators. In: Proceedings in Physics, vol 221. Springer, pp 517–525

    Google Scholar 

  20. Korol AM (2019) Tunneling conductance of the s-wave and d-wave pairing superconductive graphene-normal graphene junction. Low Temp Phys 45(5):A48

    Article  Google Scholar 

  21. Takahashi R, Murakami S (2011) Gapless interface states between topological insulators with opposite dirac velocities. Phys Rev 107:166805

    Google Scholar 

  22. Sen D, Deb O (2012) Junction between surfaces of two topological insulators. Phys Rev B 85:245402

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Korol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korol, A.M., Medvid’, N.V., Sokolenko, A.I., Shevchenko, O.Y. (2021). Ballistic Transmission of the Relativistic Quasielectrons Through the Potential Barrier in the Alfa-T3 Model. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_12

Download citation

Publish with us

Policies and ethics