Skip to main content

Molecular Landscape of MDS

  • Chapter
  • First Online:
Diagnosis and Management of Myelodysplastic Syndromes

Abstract

The characterization of “myelodysplastic syndromes (MDS)” remains a complex challenge. The interpretation of respective morphological features is observer dependent and may also be associated with other hematological neoplasms or benign and reactive conditions. Although cytogenetics can provide complementary information of great importance for diagnosis and prognosis, only ~50% of de novo MDS cases carry a cytogenetic aberration. Within the last decade, advances in sequencing technologies have allowed for a comprehensive mapping of the molecular genetic landscape in MDS. These efforts have shown that there is an MDS-associated pattern of frequently mutated genes with key roles in a distinct set of functional classes – and that the great majority of patients (90%) carries at least one mutation. The insight we gain through molecular genetics is therefore crucial in understanding MDS, from pathogenesis and pathobiology, for diagnosis, and to predict course of disease. Implementing this knowledge into the clinical setting is likely to improve classification, prognostication, and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaffe ES, Harris NL, Vardiman JW. WHO classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. 3rd ed. Lyon: IARC Press; 2001.

    Google Scholar 

  2. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International Scoring System for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    Article  CAS  PubMed  Google Scholar 

  3. Bowen D, Culligan D, Jowitt S, Kelsey S, Mufti G, Oscier D, et al. Guidelines for the diagnosis and therapy of adult myelodysplastic syndromes. Br J Haematol. 2003;120(2):187–200.

    Article  PubMed  Google Scholar 

  4. Haase D, Germing U, Schanz J, Pfeilstöcker M, Nosslinger T, Hildebrandt B, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385–95.

    Article  CAS  PubMed  Google Scholar 

  5. Pozdnyakova O, Miron PM, Tang G, Walter O, Raza A, Woda B, et al. Cytogenetic abnormalities in a series of 1,029 patients with primary myelodysplastic syndromes: a report from the US with a focus on some undefined single chromosomal abnormalities. Cancer. 2008;113(12):3331–40.

    Article  PubMed  Google Scholar 

  6. Olney HJ, Le Beau MM. Evaluation of recurring cytogenetic abnormalities in the treatment of myelodysplastic syndromes. Leuk Res. 2007;31(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  7. Steensma DP, List AF. Genetic testing in the myelodysplastic syndromes: molecular insights into hematologic diversity. Mayo Clin Proc. 2005;80(5):681–98.

    Article  CAS  PubMed  Google Scholar 

  8. Bacher U, Haferlach T, Kern W, Weiss T, Schnittger S, Haferlach C. The impact of cytomorphology, cytogenetics, molecular genetics, and immunophenotyping in a comprehensive diagnostic workup of myelodysplastic syndromes. Cancer. 2009;115(19):4524–32.

    Article  PubMed  Google Scholar 

  9. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  12. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2017.

    Google Scholar 

  13. Bejar R, Papaemmanuil E, Haferlach T, Garcia-Manero G, Maciejewski JP, Sekeres MA, et al. Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood (ASH Annual Meeting Abstracts). 2015;126(23):907.

    Google Scholar 

  14. Dawson MA. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017;355(6330):1147–52.

    Article  CAS  PubMed  Google Scholar 

  15. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  16. Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol. 2018;51:170–9.

    Article  CAS  PubMed  Google Scholar 

  17. Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lin ME, Hou HA, Tsai CH, Wu SJ, Kuo YY, Tseng MH, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thol F, Winschel C, Ludeking A, Yun H, Friesen I, Damm F, et al. Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica. 2011;96(12):1870–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014;25(4):442–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu F, Wu LY, He Q, Wu D, Zhang Z, Song LX, et al. Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes. Sci Rep. 2017;7:43113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung SH, Kim YJ, Yim SH, Kim HJ, Kwon YR, Hur EH, et al. Somatic mutations predict outcomes of hypomethylating therapy in patients with myelodysplastic syndrome. Oncotarget. 2016;7(34):55264–75.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liang S, Zhou X, Pan H, Yang Y, Shi L, Wang L. Prognostic value of DNMT3A mutations in myelodysplastic syndromes: a meta-analysis. Hematology. 2019;24(1):613–22.

    Article  CAS  PubMed  Google Scholar 

  31. Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29(9):910–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114(15):3285–91.

    Article  CAS  PubMed  Google Scholar 

  33. Haferlach C, Stengel A, Meggendorfer M, Kern W, Haferlach T. Characterization of MDS Harboring TET2 mutations and/or TET2 deletions. Blood. 2016;128(22):4288.

    Article  Google Scholar 

  34. Lin Y, Lin Z, Cheng K, Fang Z, Li Z, Luo Y, et al. Prognostic role of TET2 deficiency in myelodysplastic syndromes: a meta-analysis. Oncotarget. 2017;8(26):43295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo Z, Zhang SK, Zou Z, Fan RH, Lyu XD. Prognostic significance of TET2 mutations in myelodysplastic syndromes: a meta-analysis. Leuk Res. 2017;58:102–7.

    Article  CAS  PubMed  Google Scholar 

  36. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ. Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev. 2011;40(8):4364–97.

    Article  CAS  PubMed  Google Scholar 

  38. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95(10):1668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DiNardo CD, Jabbour E, Ravandi F, Takahashi K, Daver N, Routbort M, et al. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia. 2016;30(4):980–4.

    Article  CAS  PubMed  Google Scholar 

  42. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  43. Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia. 2014;28(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  44. Chittock EC, Latwiel S, Miller TC, Muller CW. Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 2017;45(1):193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6.

    Article  CAS  PubMed  Google Scholar 

  47. Nikoloski G, Langemeijer SM, Kuiper RP, Knops RH, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7.

    Article  CAS  PubMed  Google Scholar 

  48. Abdel-Wahab O, Adli M, Saunders L, Gao JG, Shih A, Pandey S, et al. ASXL1 mutations promote myeloid transformation through inhibition of PRC2-mediated gene repression. Blood. 2011;118(21):405a.

    Article  Google Scholar 

  49. Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 2015;6:7307.

    Article  CAS  PubMed  Google Scholar 

  50. Asada S, Goyama S, Inoue D, Shikata S, Takeda R, Fukushima T, et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun. 2018;9(1):2733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23.

    Article  CAS  PubMed  Google Scholar 

  52. Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van den Boom V, Maat H, Geugien M, Rodriguez LA, Sotoca AM, Jaques J, et al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 2016;14(2):332–46.

    Article  PubMed  CAS  Google Scholar 

  55. Wang Z, Gearhart MD, Lee YW, Kumar I, Ramazanov B, Zhang Y, et al. A non-canonical BCOR-PRC1.1 complex represses differentiation programs in human ESCs. Cell Stem Cell. 2018;22(2):235–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122(18):3169–77.

    Article  CAS  PubMed  Google Scholar 

  57. Losada A. Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer. 2014;14(6):389–93.

    Article  CAS  PubMed  Google Scholar 

  58. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood. 2014;124:1790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Montalban-Bravo G, Takahashi K, Patel K, Wang F, Xingzhi S, Nogueras GM, et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018;9(11):9714–27.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol. 2007;7(2):105–17.

    Article  CAS  PubMed  Google Scholar 

  61. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2(7):502–13.

    Article  CAS  PubMed  Google Scholar 

  62. Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, et al. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol. 2007;139(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  63. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  65. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.

    Article  CAS  Google Scholar 

  66. Inoue D, Bradley RK, Abdel-Wahab O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev. 2016;30(9):989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gangat N, Mudireddy M, Lasho TL, Finke CM, Nicolosi M, Szuber N, et al. Mutations and prognosis in myelodysplastic syndromes: karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am J Hematol. 2018;93(5):691–7.

    Article  CAS  PubMed  Google Scholar 

  71. Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis CE, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood. 2012;119(14):3211–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Larsson CA, Cote G, Quintas-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res. 2013;11(8):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen H, Zheng X, Luecke S, Green MR. The U2AF35-related protein Urp contacts the 3′ splice site to promote U12-type intron splicing and the second step of U2-type intron splicing. Genes Dev. 2010;24(21):2389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turunen JJ, Niemela EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 2013;4(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  76. Madan V, Kanojia D, Li J, Okamoto R, Sato-Otsubo A, Kohlmann A, et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun. 2015;6:6042.

    Article  CAS  PubMed  Google Scholar 

  77. Murphy DM, Bejar R, Stevenson K, Neuberg D, Shi Y, Cubrich C, et al. NRAS mutations with low allele burden have independent prognostic significance for patients with lower risk myelodysplastic syndromes. Leukemia. 2013;27(10):2077–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Makishima H, Cazzolli H, Szpurka H, Dunbar AJ, Tiu R, Huh J, et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol. 2009;27(36):6109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29(5):504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8.

    Article  CAS  PubMed  Google Scholar 

  81. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia. 2004;18(3):466–75.

    Article  CAS  PubMed  Google Scholar 

  82. Georgiou G, Karali V, Zouvelou C, Kyriakou E, Dimou M, Chrisochoou S, et al. Serial determination of FLT3 mutations in myelodysplastic syndrome patients at diagnosis, follow up or acute myeloid leukaemia transformation: incidence and their prognostic significance. Br J Haematol. 2006;134(3):302–6.

    Article  CAS  PubMed  Google Scholar 

  83. Shih LY, Lin TL, Wang PN, Wu JH, Dunn P, Kuo MC, et al. Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome. Cancer. 2004;101(5):989–98.

    Article  CAS  PubMed  Google Scholar 

  84. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307–15.

    Article  CAS  PubMed  Google Scholar 

  85. Soenen V, Preudhomme C, Roumier C, Daudignon A, Lai JL, Fenaux P. 17p deletions in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood. 1998;91(3):1008–15.

    Article  CAS  PubMed  Google Scholar 

  86. Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Wattel E, et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of p53 mutations. Leukemia. 1995;9:370.

    CAS  PubMed  Google Scholar 

  87. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705–11.

    Article  CAS  PubMed  Google Scholar 

  88. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;84(9):3148–57.

    Article  CAS  PubMed  Google Scholar 

  89. Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K. TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood. 1995;85(8):2189–93.

    Article  CAS  PubMed  Google Scholar 

  90. Della Porta MG, Galli A, Bacigalupo A, Zibellini S, Bernardi M, Rizzo E, et al. Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2016;34(30):3627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–5.

    Article  CAS  PubMed  Google Scholar 

  92. Wong TN, Miller CA, Jotte MRM, Bagegni N, Baty JD, Schmidt AP, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018;9(1):455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kindler T. CHIPing out PPM1D-mutant hematopoiesis. Blood. 2018;132(11):1087–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kahn JD, Miller PG, Silver AJ, Sellar RS, Bhatt S, Gibson C, et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018;132(11):1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hsu JI, Dayaram T, Tovy A, De BE, Jeong M, Wang F, et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell. 2018;23(5):700–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Falconi G, Fabiani E, Piciocchi A, Criscuolo M, Fianchi L, Lindfors Rossi EL, et al. Somatic mutations as markers of outcome after azacitidine and allogeneic stem cell transplantation in higher-risk myelodysplastic syndromes. Leukemia. 2019;33(3):785–90.

    Article  PubMed  Google Scholar 

  97. Craddock CF, Houlton AE, Quek LS, Ferguson P, Gbandi E, Roberts C, et al. Outcome of azacitidine therapy in acute myeloid leukemia is not improved by concurrent Vorinostat therapy but is predicted by a diagnostic molecular signature. Clin Cancer Res. 2017;23(21):6430–40.

    Article  CAS  PubMed  Google Scholar 

  98. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shih AH, Meydan C, Shank K, Garrett-Bakelman FE, Ward PS, Intlekofer AM, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia. Cancer Discov. 2017;7(5):494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147–52.

    Article  CAS  PubMed  Google Scholar 

  101. Jädersten M, Saft L, Smith A, Kulasekararaj AG, Pomplun S, Göhring G, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29(15):1971–9.

    Article  PubMed  Google Scholar 

  102. Hofmann WK, Platzbecker U, Gtze K, Haase D, Thol F, Stauder R, Passweg J, Germing U. Onkopedia Leitlinien: Myelodysplastische Syndrome (MDS). DGHO 2020. https://www.onkopedia.com/de/onkopedia/guidelines/myelodysplastische-syndrome-mds/@@guideline/html/index.html.

  103. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Steensma DP. How I use molecular genetic tests to evaluate patients who have or may have myelodysplastic syndromes. Blood. 2018;132(16):1657–63.

    Article  CAS  PubMed  Google Scholar 

  105. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376(6):536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10(8):1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malcovati L, Galli A, Travaglino E, Ambaglio I, Rizzo E, Molteni E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129(25):3371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwok B, Hall JM, Witte JS, Xu Y, Reddy P, Lin K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Takahashi K, Jabbour E, Wang X, Luthra R, Bueso-Ramos C, Patel K, et al. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013;27(10):2081–3.

    Article  CAS  PubMed  Google Scholar 

  112. Baer C, Pohlkamp C, Haferlach C, Kern W, Haferlach T. Molecular patterns in cytopenia patients with our without evidence of myeloid neoplasm – a comparison of 756 cases. Leukemia. 2018;32(10):2295–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Haferlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haferlach, T., Schmidts, I. (2020). Molecular Landscape of MDS. In: Nazha, A. (eds) Diagnosis and Management of Myelodysplastic Syndromes. Springer, Cham. https://doi.org/10.1007/978-3-030-51878-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51878-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51877-6

  • Online ISBN: 978-3-030-51878-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics