Skip to main content

The Specific Role of Minimally Invasive Robotic Digestive Surgery

  • Chapter
  • First Online:
Volume-Outcome Relationship in Oncological Surgery

Part of the book series: Updates in Surgery ((UPDATESSURG))

  • 227 Accesses

Abstract

Robotic technology has proven to be safe and effective in many surgical fields with comparable or even better outcomes than conventional minimally invasive surgery for several oncological procedures. However, the widespread diffusion of robotic surgical systems has encouraged, despite their significant cost, an uncontrolled adoption of the robot-assisted approach that is being used by an increasing number of centers with low volume and poor experience. Recent publications have shown a strong inverse relationship between hospital caseload of robotic procedures and the related outcomes especially when performed for oncological indications. On this basis, the surgical community is calling for centralization of patients to high-volume centers. In this chapter the current available evidence on this topic is analyzed for specific fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez JM, Dimou F, Weber J, et al. Defining the learning curve for robotic-assisted esophagogastrectomy. J Gastrointest Surg. 2013;17(8):1346–51.

    PubMed  Google Scholar 

  2. Abbott A, Shridhar R, Hoffe S, et al. Robotic assisted Ivor Lewis esophagectomy in the elderly patient. J Gastrointest Oncol. 2015;6(1):31–8.

    PubMed  PubMed Central  Google Scholar 

  3. Zhang H, Chen L, Wang Z, et al. The learning curve for robotic McKeown esophagectomy in patients with esophageal cancer. Ann Thorac Surg. 2018;105(4):1024–30.

    PubMed  Google Scholar 

  4. van der Sluis PC, Ruurda JP, van der Horst S, et al. Learning curve for robot-assisted minimally invasive thoracoscopic esophagectomy: results from 312 cases. Ann Thorac Surg. 2018;106(1):264–71.

    PubMed  Google Scholar 

  5. Sarkaria IS, Rizk NP, Grosser R, et al. Attaining proficiency in robotic-assisted minimally invasive esophagectomy while maximizing safety during procedure development. Innovations (Phila). 2016;11(4):268–73.

    Google Scholar 

  6. Park S, Hyun K, Lee HJ, et al. A study of the learning curve for robotic oesophagectomy for oesophageal cancer. Eur J Cardiothorac Surg. 2018;53(4):862–70.

    PubMed  Google Scholar 

  7. Claassen L, van Workum F, Rosman C. Learning curve and postoperative outcomes of minimally invasive esophagectomy. J Thorac Dis. 2019;11(Suppl 5):S777–85.

    PubMed  PubMed Central  Google Scholar 

  8. Egberts J-H, Biebl M, Perez DR, et al. Robot-assisted oesophagectomy: recommendations towards a standardised Ivor Lewis procedure. J Gastrointest Surg. 2019;23(7):1485–92.

    PubMed  Google Scholar 

  9. Song J, Kang WH, Oh SJ, et al. Role of robotic gastrectomy using da Vinci system compared with laparoscopic gastrectomy: initial experience of 20 consecutive cases. Surg Endosc. 2009;23(6):1204–11.

    PubMed  Google Scholar 

  10. Son T, Hyung WJ. Robotic gastrectomy for gastric cancer. J Surg Oncol. 2015;112(3):271–8.

    PubMed  Google Scholar 

  11. Suda K, Nakauchi M, Inaba K, et al. Minimally invasive surgery for upper gastrointestinal cancer: our experience and review of the literature. World J Gastroenterol. 2016;22(19):4626–37.

    PubMed  PubMed Central  Google Scholar 

  12. Kang BH, Xuan Y, Hur H, et al. Comparison of surgical outcomes between robotic and laparoscopic gastrectomy for gastric cancer: the learning curve of robotic surgery. J Gastric Cancer. 2012;12(3):156–63.

    PubMed  PubMed Central  Google Scholar 

  13. Huang K-H, Lan Y-T, Fang W-L, et al. Comparison of the operative outcomes and learning curves between laparoscopic and robotic gastrectomy for gastric cancer. PLoS One. 2014;9(10):e111499. https://doi.org/10.1371/journal.pone.0111499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrison LE, Yiengpruksawan A, Patel J, et al. Robotic gastrectomy and esophagogastrectomy: a single center experience of 105 cases. J Surg Oncol. 2015;112(8):888–93.

    PubMed  Google Scholar 

  15. Park S-S, Kim M-C, Park MS, Hyung WJ. Rapid adaptation of robotic gastrectomy for gastric cancer by experienced laparoscopic surgeons. Surg Endosc. 2012;26(1):60–7.

    PubMed  Google Scholar 

  16. Kim H-I, Park MS, Song KJ, et al. Rapid and safe learning of robotic gastrectomy for gastric cancer: multidimensional analysis in a comparison with laparoscopic gastrectomy. Eur J Surg Oncol. 2014;40(10):1346–54.

    PubMed  Google Scholar 

  17. Zhou J, Shi Y, Qian F, et al. Cumulative summation analysis of learning curve for robot-assisted gastrectomy in gastric cancer. J Surg Oncol. 2015;111(6):760–7.

    PubMed  Google Scholar 

  18. Nakauchi M, Uyama I, Suda K, et al. Robotic surgery for the upper gastrointestinal tract: current status and future perspectives. Asian J Endosc Surg. 2017;10(4):354–63.

    PubMed  Google Scholar 

  19. An JY, Kim SM, Ahn S, et al. Successful robotic gastrectomy does not require extensive laparoscopic experience. J Gastric Cancer. 2018;18(1):90–8.

    PubMed  PubMed Central  Google Scholar 

  20. Kim MS, Kim WJ, Hyung WJ, et al. Comprehensive learning curve of robotic surgery: discovery from a multicenter prospective trial of robotic gastrectomy. Ann Surg. 2019. https://doi.org/10.1097/SLA.0000000000003583. [Epub ahead of print].

  21. van Boxel GI, Ruurda JP, van Hillegersberg R. Robotic-assisted gastrectomy for gastric cancer: a European perspective. Gastric Cancer. 2019;22(5):909–19.

    PubMed  PubMed Central  Google Scholar 

  22. Giulianotti PC, Sbrana F, Bianco FM, et al. Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc. 2010;24(7):1646–57.

    PubMed  Google Scholar 

  23. Zureikat AH, Moser AJ, Boone BA, et al. 250 robotic pancreatic resections: safety and feasibility. Ann Surg. 2013;258:554–9; discussion 559–62.

    PubMed  PubMed Central  Google Scholar 

  24. Boggi U, Napoli N, Costa F, et al. Robotic-assisted pancreatic resections. World J Surg. 2016;40(10):2497–506.

    PubMed  Google Scholar 

  25. Xourafas D, Ashley SW, Clancy TE. Comparison of perioperative outcomes between open, laparoscopic and robotic distal pancreatectomy: an analysis of 1815 patients from the ACS-NSQIP procedure-targeted pancreatectomy database. J Gastrointest Surg. 2017;21(9):1442–52.

    PubMed  Google Scholar 

  26. Zhao W, Liu C, Li S, et al. Safety and efficacy for robot-assisted versus open pancreaticoduodenectomy and distal pancreatectomy: a systematic review and meta-analysis. Surg Oncol. 2018;27(3):468–78.

    PubMed  Google Scholar 

  27. McMillan MT, Zureikat AH, Hogg ME, et al. A propensity score-matched analysis of robotic vs open pancreaticoduodenectomy on incidence of pancreatic fistula. JAMA Surg. 2017;152(4):327–35.

    PubMed  PubMed Central  Google Scholar 

  28. Adam MA, Choudhury K, Dinan MA, et al. Minimally invasive versus open pancreaticoduodenectomy for cancer: practice patterns and short-term outcomes among 7061 patients. Ann Surg. 2015;262(2):372–7.

    PubMed  Google Scholar 

  29. Sharpe SM, Talamonti MS, Wang CE, et al. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the National Cancer Data Base. J Am Coll Surg. 2015;221(1):175–84.

    PubMed  Google Scholar 

  30. Lieberman MD, Kilburn H, Lindsey M, Brennan MF. Relation of perioperative deaths to hospital volume among patients undergoing pancreatic resection for malignancy. Ann Surg. 1995;222(5):638–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hata T, Motoi F, Ishida M, et al. Effect of hospital volume on surgical outcomes after pancreaticoduodenectomy: a systematic review and meta-analysis. Ann Surg. 2016;263(4):664–72.

    PubMed  Google Scholar 

  32. Gooiker GA, van Gijn W, Wouters MW, et al.; Signalling Committee Cancer of the Dutch Cancer Society. Systematic review and meta-analysis of the volume-outcome relationship in pancreatic surgery. Br J Surg. 2011;98(4):485–94.

    Google Scholar 

  33. Schmidt CM, Turrini O, Parikh P, et al. Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: a single-institution experience. Arch Surg. 2010;145(7):634–40.

    PubMed  Google Scholar 

  34. Adam MA, Thomas S, Youngwirth L, et al. Defining a hospital volume threshold for minimally invasive pancreaticoduodenectomy in the United States. JAMA Surg. 2017;152(4):336–42.

    PubMed  PubMed Central  Google Scholar 

  35. Stafford AT, Walsh RM. Robotic surgery of the pancreas: the current state of the art. J Surg Oncol. 2015;112(3):289–94.

    PubMed  Google Scholar 

  36. Wright GP, Zureikat AH. Development of minimally invasive pancreatic surgery: an evidence-based systematic review of laparoscopic versus robotic approaches. J Gastrointest Surg. 2016;20(9):1658–65.

    PubMed  Google Scholar 

  37. Nota CL, Zwart MJ, Fong Y, et al. Developing a robotic pancreas program: the Dutch experience. J Vis Surg. 2017;3:106. https://doi.org/10.21037/jovs.2017.07.02.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marcus HJ, Hughes-Hallett A, Payne CJ, et al. Trends in the diffusion of robotic surgery: a retrospective observational study. Int J Med Robot. 2017;13(4):e1870. https://doi.org/10.1002/rcs.1870.

    Article  PubMed Central  Google Scholar 

  39. Delaney CP, Lynch AC, Senagore AJ, Fazio VW. Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum. 2003;46(12):1633–9.

    PubMed  Google Scholar 

  40. Bianchi PP, Luca F, Petz W, et al. The role of the robotic technique in minimally invasive surgery in rectal cancer. Ecancermedicalscience. 2013;7:357. https://doi.org/10.3332/ecancer.2013.357.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jiménez-Rodríguez RM, Rubio-Dorado-Manzanares M, Díaz-Pavón JM, et al. Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Color Dis. 2016;31(12):1807–15.

    Google Scholar 

  42. Yeo HL, Abelson JS, Mao J, et al. Surgeon annual and cumulative volumes predict early postoperative outcomes after rectal cancer resection. Ann Surg. 2017;265(1):151–7.

    PubMed  Google Scholar 

  43. Keller DS, Hashemi L, Lu M, Delaney CP. Short-term outcomes for robotic colorectal surgery by provider volume. J Am Coll Surg. 2013;217(6):1063–9.e1.

    PubMed  Google Scholar 

  44. Concors SJ, Murken DR, Hernandez PT, et al. The volume-outcome relationship in robotic proctectomy: does center volume matter? Results of a national cohort study. Surg Endosc. 2019. https://doi.org/10.1007/s00464-019-07227-6. [Epub ahead of print].

  45. Symer MM, Sedrakyan A, Yeo HL. Case sequence analysis of the robotic colorectal resection learning curve. Dis Colon Rectum. 2019;62(9):1071–8.

    PubMed  Google Scholar 

  46. Jayne D, Pigazzi A, Marshall H, et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA. 2017;318:1569–80.

    PubMed  PubMed Central  Google Scholar 

  47. Liu CA, Huang KH, Chen MH, et al. Comparison of the surgical outcomes of minimally invasive and open surgery for octogenarian and older compared to younger gastric cancer patients: a retrospective cohort study. BMC Surg. 2017;17(1):68. https://doi.org/10.1186/s12893-017-0265-3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Plotkin A, Ceppa EP, Zarzaur BL, et al. Reduced morbidity with minimally invasive distal pancreatectomy for pancreatic adenocarcinoma. HPB (Oxford). 2017;19(3):279–85.

    Google Scholar 

  49. Bhama AR, Obias V, Welch KB, et al. A comparison of laparoscopic and robotic colorectal surgery outcomes using the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Surg Endosc. 2016;30(4):1576–84.

    PubMed  Google Scholar 

  50. Sun Z, Kim J, Adam MA, et al. Minimally invasive versus open low anterior resection: equivalent survival in a national analysis of 14,033 patients with rectal cancer. Ann Surg. 2016;263(6):1152–8.

    PubMed  Google Scholar 

  51. Cleary RK, Mullard AJ, Ferraro J, Regenbogen SE. The cost of conversion in robotic and laparoscopic colorectal surgery. Surg Endosc. 2018;32(3):1515–24.

    PubMed  Google Scholar 

  52. Salman M, Bell T, Martin J, et al. Use, cost, complications, and mortality of robotic versus nonrobotic general surgery procedures based on a nationwide database. Am Surg. 2013;79(6):553–60.

    PubMed  Google Scholar 

  53. Formisano G, Esposito S, Coratti F, et al. Structured training program in colorectal surgery: the robotic surgeon as a new paradigm. Minerva Chir. 2018;74(2):17–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pietrabissa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borghi, F., Bianchi, P.P., Pugliese, L., Peri, A., Formisano, G., Pietrabissa, A. (2021). The Specific Role of Minimally Invasive Robotic Digestive Surgery. In: Montorsi, M. (eds) Volume-Outcome Relationship in Oncological Surgery. Updates in Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-51806-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51806-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51805-9

  • Online ISBN: 978-3-030-51806-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics