Skip to main content

Genetics of Autoimmune Liver Diseases

  • Chapter
  • First Online:
Liver Immunology

Abstract

Autoimmune liver diseases (AILDs) have an important genetic background. This is supported by different lines of evidence, that is, clustering in families, high concordance rates in monozygotic twins, increased risk of the disease in siblings compared to general population, and association with other autoimmune conditions. In this chapter, we summarize current knowledge regarding each of the three most common AILDs (autoimmune hepatitis, AIH; primary biliary cholangitis, PBC; and primary sclerosing cholangitis, PSC); we then propose a series of possible future lines of investigation to explore the amount of heritability, which is still to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach N, Schaffner F. Familial primary biliary cirrhosis. J Hepatol [Internet] 1994;20(6):698–701. Available from: https://doi.org/10.1016/S0168-8278(05)80137-0

  2. Grønbæk L, Vilstrup H, Pedersen L, Christensen K, Jepsen P. Family occurrence of autoimmune hepatitis: a Danish nationwide registry-based cohort study. J Hepatol [Internet] 2018;69(4):873–7. Available from: https://doi.org/10.1016/j.jhep.2018.05.035

  3. Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004;127(2):485–92.

    Google Scholar 

  4. Jones DEJ, Watt FE, Metcalf J V, Bassendine MF, James OFW. Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol [Internet] 1999;30(3):402–7. Available from: https://doi.org/10.1016/S0168-8278(99)80097-X

  5. Floreani A, Franceschet I, Cazzagon N, et al. Extrahepatic autoimmune conditions associated with primary biliary cirrhosis. Clin Rev Allergy Immunol [Internet] 2015;48(2–3):192–7. Available from: http://link.springer.com/10.1007/s12016-014-8427-x

  6. Grønbæk L, Vilstrup H, Pedersen L, Jepsen P. Extrahepatic autoimmune diseases in patients with autoimmune hepatitis and their relatives: a Danish nationwide cohort study. Liver Int [Internet] 2019;39(1):205–14. Available from: https://doi.org/10.1111/liv.13963

  7. Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis – a comprehensive review. J Hepatol [Internet] 2017;67(6):1298–323. Available from: https://doi.org/10.1016/j.jhep.2017.07.022

  8. Lander ES, Schork NJ. Genetic dissection of complex traits. Science (80- ) [Internet] 1994;265(5181):2037 LP–2048. Available from: http://science.sciencemag.org/content/265/5181/2037.abstract

  9. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science (80- ) [Internet] 1996;273(5281):1516 LP – 1517. Available from: http://science.sciencemag.org/content/273/5281/1516.abstract

  10. Feero WG, Guttmacher AE, Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med [Internet] 2010;363(2):166–76. Available from: http://www.nejm.org/doi/full/10.1056/NEJMra0905980%5Cn; http://www.nejm.org/doi/abs/10.1056/NEJMra0905980%5Cn; http://www.nejm.org.ezproxy.umassmed.edu/doi/full/10.1056/NEJMra0905980

  11. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med [Internet] 2010;363(2):166–76. Available from: https://doi.org/10.1056/NEJMra0905980

  12. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol [Internet] 2018;18:325. Available from: https://doi.org/10.1038/nri.2017.143

  13. Homberg J-C, Abuaf N, Bernard O, et al. Chronic active hepatitis associated with antiliver/kidney microsome antibody type 1: a second type of “autoimmune” hepatitis. Hepatology [Internet] 1987;7(6):1333–9. Available from: https://doi.org/10.1002/hep.1840070626

  14. Strettell MD, Donaldson PT, Thomson LJ, et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology [Internet] 1997;112(6):2028–35. Available from: https://doi.org/10.1053/gast.1997.v112.pm9178696

  15. Doherty DG, Donaldson PT, Underhill JA, et al. Allelic sequence variation in the HLA class II genes and proteins in patients with autoimmune hepatitis. Hepatology [Internet] 1994;19(3):609–15. Available from: https://doi.org/10.1002/hep.1840190311

  16. Mackay I, Morris P. Association of autoimmune active chronic hepatitis with HL-A1,8. Lancet [Internet] 1972;300(7781):793–5. Available from: http://www.sciencedirect.com/science/article/pii/S0140673672921496

  17. Opelz G, Vogten AJM, Summerskill WHJ, Schalm SW, Terasaki PI. HLA determinants in chronic active liver disease: possible relation of HLA-Dw3 to prognosis. Tissue Antigens [Internet] 1977;9(1):36–40. Available from: https://doi.org/10.1111/j.1399-0039.1977.tb01077.x

  18. Donaldson PT, Doherty DG, Hayllar KM, McFarlane IG, Johnson PJ, Williams R. Susceptibility to autoimmune chronic active hepatitis: human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology [Internet] 1991 [cited 2016 Jul 15];13(4):701–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2010165

  19. Seki T, Ota M, Furuta S, et al. HLA class II molecules and autoimmune hepatitis susceptibility in Japanese patients. Gastroenterology [Internet] 1992;103(3):1041–7. Available from: https://www.gastrojournal.org/article/0016-5085(92)90041-V/abstract

  20. Vázquez-García MN, Aláez C, Olivo A, et al. MHC class II sequences of susceptibility and protection in Mexicans with autoimmune hepatitis. J Hepatol [Internet] 1998;28(6):985–90. Available from: https://doi.org/10.1016/S0168-8278(98)80347-4

  21. Pando M, Larriba J, Fernandez GC, et al. Pediatric and adult forms of type I autoimmune hepatitis in Argentina: evidence for differential genetic predisposition. Hepatology [Internet] 1999;30(6):1374–80. Available from: https://doi.org/10.1002/hep.510300611

  22. de Boer YS, van Gerven NMF, Zwiers A, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology [Internet] 2014;147(2):443–452.e5. Available from: https://doi.org/10.1053/j.gastro.2014.04.022

  23. Group TIPBCGS, Juran BD, Lammert C, et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet [Internet] 2012;21(23):5209–21. Available from: https://doi.org/10.1093/hmg/dds359

  24. Liu JZ, Hov JR, Folseraas T, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet [Internet] 2013;45:670. Available from: https://doi.org/10.1038/ng.2616

  25. Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet [Internet] 2008;40(4):395–402. Available from: https://doi.org/10.1038/ng.102

  26. Umemura T, Joshita S, Hamano H, et al. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet [Internet] 2017;62(11):963–7. Available from: https://doi.org/10.1038/jhg.2017.74

  27. Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFβ1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol [Internet] 2018;105(3):279–84. Available from: http://www.sciencedirect.com/science/article/pii/S0014480018301837

  28. Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol [Internet] 2011;82(10):1391–402. Available from: http://www.sciencedirect.com/science/article/pii/S0006295211004060

  29. Mori T, Iwasaki Y, Seki Y, et al. Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ–producing T cells. J Immunol [Internet] 2014;193(4):1728 LP – 1736. Available from: http://www.jimmunol.org/content/193/4/1728.abstract

  30. Czaja AJ, Donaldson PT, Lohse AW. Antibodies to soluble liver antigen/liver pancreas and Hla risk factors for type 1 autoimmune hepatitis. Am J Gastroenterol [Internet] 2002;97(2). Available from: https://journals.lww.com/ajg/Fulltext/2002/02000/Antibodies_To_Soluble_Liver_Antigen_Liver_Pancreas.34.aspx

  31. Jones DEJ, Watt FE, Metcalf JV, Bassendine MF, James OFW. Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol. 1999;30(3):402–7.

    Article  CAS  Google Scholar 

  32. Farh KK-H, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature [Internet] 2014;518:337. Available from: https://doi.org/10.1038/nature13835

  33. Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med [Internet] 2009;360(24):2544–55. Available from: https://doi.org/10.1056/NEJMoa0810440

  34. Hirschfield GM, Liu X, Han Y, et al. Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet [Internet] 2010;42:655. Available from: https://doi.org/10.1038/ng.631

  35. Liu X, Invernizzi P, Lu Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet [Internet] 2010;42(8):658–60. Available from: https://doi.org/10.1038/ng.627

  36. Mells GF, Floyd JAB, Morley KI, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet [Internet] 2011;43:329. Available from: https://doi.org/10.1038/ng.789

  37. Nakamura M, Nishida N, Kawashima M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet [Internet] 2012;91(4):721–8. Available from: https://doi.org/10.1016/j.ajhg.2012.08.010

  38. Qiu F, Tang R, Zuo X, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun 2017;14828.

    Google Scholar 

  39. Juran BD, Hirschfield GM, Invernizzi P, et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21(23):5209–21.

    Article  CAS  Google Scholar 

  40. Liu JZ, Almarri MA, Gaffney DJ, et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet [Internet] 2012;44:1137. Available from: https://doi.org/10.1038/ng.2395

  41. Cordell HJ, Han Y, Mells GF, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun [Internet] 2015;6:8019. Available from: http://www.nature.com/ncomms/2015/150922/ncomms9019/full/ncomms9019.html%5Cn; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4580981&tool=pmcentrez&rendertype=abstract%5Cn; http://www.nature.com/doifinder/10.1038/ncomms9019

  42. Donaldson PT, Baragiotta A, Heneghan MA, et al. HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology [Internet] 2006;44(3):667–74. Available from: https://doi.org/10.1002/hep.21316

  43. Invernizzi P, Selmi C, Poli F, et al. Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. Hepatology [Internet] 2008;48(6):1906–12. Available from: https://doi.org/10.1002/hep.22567

  44. Li M, Zheng H, Tian Q, Rui M, Liu D. HLA-DR polymorphism and primary biliary cirrhosis: evidence from a meta-analysis. Arch Med Res [Internet] 2014;45(3):270–9. Available from: http://www.sciencedirect.com/science/article/pii/S018844091400040X

  45. Clemente MG, Frau F, Bernasconi M, et al. Distinctive HLA-II association with primary biliary cholangitis on the Island of Sardinia. United Eur Gastroenterol J [Internet] 2017;5(4):527–31. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28588884

  46. Gulamhusein AF, Juran BD, Lazaridis KN. Genome-wide association studies in primary biliary cirrhosis. Semin Liver Dis. 2015;35(4):392–401.

    Article  Google Scholar 

  47. Ji SG, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet [Internet] 2017;49(2):269–73. Available from: https://doi.org/10.1038/ng.3745

  48. Srivastava B, Mells GF, Cordell HJ, et al. Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scand J Gastroenterol. 2012;47(7):820–6.

    Article  CAS  Google Scholar 

  49. Melum E, Franke A, Schramm C, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet [Internet] 2010;43:17. Available from: https://doi.org/10.1038/ng.728

  50. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8.

    Article  CAS  Google Scholar 

  51. Ellinghaus D, Folseraas T, Holm K, et al. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58(3):1074–83.

    Article  CAS  Google Scholar 

  52. Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol [Internet] 2012;57(2):366–75. Available from: https://doi.org/10.1016/j.jhep.2012.03.031

  53. Couturier N, Bucciarelli F, Nurtdinov RN, et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain [Internet] 2011;134(3):693–703. Available from: https://doi.org/10.1093/brain/awr010

  54. Hsu W, Zhang W, Tsuneyama K, et al. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin-2Rα−/− mice. Hepatology [Internet] 2009;49(1):133–40. Available from: https://doi.org/10.1002/hep.22591

  55. Ronca V, Chen QB, Lygoura V, et al. Autoantibodies in patients with interleukin 12 receptor beta 1 deficiency. J Dig Dis [Internet] 2019;20(7):363–70. Available from: https://doi.org/10.1111/1751-2980.12790

  56. Hirschfield GM, Gershwin ME, Strauss R, et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: a proof-of-concept study. Hepatology [Internet] 2016;64(1):189–99. Available from: https://doi.org/10.1002/hep.28359

  57. Jiang X, Karlsen TH. Genetics of primary sclerosing cholangitis and pathophysiological implications [Internet]. Nat. Rev. Gastroenterol. Hepatol. 2017;14(5):279–95. Available from: https://doi.org/10.1038/nrgastro.2016.154

  58. Ji S-G, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet [Internet] 2016 [cited 2017 Dec 10];49(2):269–73. Available from: http://www.nature.com/doifinder/10.1038/ng.3745

  59. Spurkland A, Saarinen S, Boberg KM, et al. HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens [Internet] 1999;53(5):459–69. Available from: https://doi.org/10.1034/j.1399-0039.1999.530502.x

  60. Donaldson PT, Farrant JM, Wilkinson ML, Hayllar K, Portmann BC, Williams R. Dual association of HLA DR2 and DR3 with primary sclerosing cholangitis. Hepatology [Internet] 1991;13(1):129–33. Available from: https://doi.org/10.1002/hep.1840130119

  61. Donaldson PT, Norris S. Evaluation of the role of MHC class II alleles, haplotypes and selected amino acid sequences in primary sclerosing cholangitis. Autoimmunity [Internet] 2002;35(8):555–64. Available from: https://doi.org/10.1080/0891693021000054093

  62. McElroy JP, Cree BAC, Caillier SJ, et al. Refining the association of MHC with multiple sclerosis in African Americans. Hum Mol Genet [Internet] 2010;19(15):3080–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20466734

  63. Krawczyk M, Höblinger A, Mihalache F, et al. Macrophage stimulating protein variation enhances the risk of sporadic extrahepatic cholangiocarcinoma. Dig Liver Dis [Internet] 2013;45(7):612–5. Available from: https://doi.org/10.1016/j.dld.2012.12.017

  64. Fiorotto R, Scirpo R, Trauner M, et al. Loss of CFTR Affects Biliary Epithelium Innate Immunity and Causes TLR4–NF-κB–Mediated Inflammatory Response in Mice. Gastroenterology [Internet] 2011;141(4):1498–1508.e5. Available from: https://doi.org/10.1053/j.gastro.2011.06.052

  65. Shearn CT, Fennimore B, Orlicky DJ, et al. Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med [Internet] 2019;143:101–14. Available from: http://www.sciencedirect.com/science/article/pii/S0891584919301601

  66. Wagner J, Catto-Smith AG, Cameron DJS, Kirkwood CD. Pseudomonas infection in children with early-onset Crohn’s disease: an association with a mutation close to PSMG1. Inflamm Bowel Dis [Internet] 2012;19(4):E58–9. Available from: https://doi.org/10.1002/ibd.23017

  67. Sebode M, Peiseler M, Franke B, et al. Reduced FOXP3+ regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms. J Hepatol [Internet] 2014;60(5):1010–6. Available from: https://doi.org/10.1016/j.jhep.2013.12.027

  68. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol [Internet] 2008;9(2):176–85. Available from: https://doi.org/10.1038/ni1554

  69. Herro R, Da Silva Antunes R, Aguilera AR, Tamada K, Croft M. Tumor necrosis factor superfamily 14 (LIGHT) controls thymic stromal lymphopoietin to drive pulmonary fibrosis. J Allergy Clin Immunol [Internet] 2015;136(3):757–68. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25680454

  70. Trivedi PJ, Tickle J, Vesterhus MN, et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut [Internet] 2018;67(6):1135 LP–1145. Available from: http://gut.bmj.com/content/67/6/1135.abstract

  71. Zimmermann HW, Seidler S, Gassler N, et al. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One [Internet] 2011;6. Available from: https://doi.org/10.1371/journal.pone.0021381

  72. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature [Internet] 2009;461(7265):747–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19812666%0A; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2831613

  73. Sadee W, Hartmann K, Seweryn M, Pietrzak M, Handelman SK, Rempala GA. Missing heritability of common diseases and treatments outside the protein-coding exome. Hum Genet 2014;133(10):1199–215.

    Google Scholar 

  74. Maroilley T, Tarailo-Graovac M. Uncovering missing heritability in rare diseases. Genes (Basel). 2019;10(4):275.

    Article  CAS  Google Scholar 

  75. Tang R, Chen H, Miao Q, et al. The cumulative effects of known susceptibility variants to predict primary biliary cirrhosis risk. Genes Immun [Internet] 2015;16:193. Available from: https://doi.org/10.1038/gene.2014.76

  76. Jiang X, Karlsen TH. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat Rev Gastroenterol Hepatol [Internet] 2017;14(5):279–95. Available from: http://www.nature.com/doifinder/10.1038/nrgastro.2016.154

  77. Génin E. Missing heritability of complex diseases: case solved? Hum Genet [Internet] 2019;(0123456789). Available from: http://link.springer.com/10.1007/s00439-019-02034-4

  78. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci. 2012;109, 1193(4):–8.

    Google Scholar 

  79. Wise AL, Gyi L, Manolio TA. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am J Hum Genet [Internet] 2013;92(5):643–7. Available from: https://doi.org/10.1016/j.ajhg.2013.03.017

  80. Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick’s Online Mendelian Inheritance in Man (OMIM®). Nucleic Acids Res [Internet] 2008;37(suppl_1):D793–6. Available from: https://doi.org/10.1093/nar/gkn665

  81. MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res [Internet] 2016;45(D1):D896–901. Available from: https://doi.org/10.1093/nar/gkw1133

  82. Invernizzi P. The X chromosome in female-predominant autoimmune diseases. Ann N Y Acad Sci [Internet] 2007;1110(1):57–64. Available from: https://doi.org/10.1196/annals.1423.007

  83. Sybert VP, Mccauley E. Turner’s Syndrome. N Engl J Med 2004;1227–38.

    Google Scholar 

  84. Invernizzi P, Miozzo M, Battezzati PM, et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet. 2004;363, 533(9408):–5.

    Google Scholar 

  85. Invernizzi P, Miozzo M, Selmi C, et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J Immunol [Internet] 2005;175(1):575–8. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.175.1.575

  86. Gerussi A, Cristoferi L, Carbone M, Asselta R, Invernizzi P. The immunobiology of female predominance in primary biliary cholangitis. J Autoimmun [Internet] 2018;95(October):124–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896841118305936

  87. Gao F, Chang D, Biddanda A, et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J Hered 2015;106(5):666–71.

    Google Scholar 

  88. Strachan T. Genetics and genomics in medicine. 2015.

    Google Scholar 

  89. Juran BD, Atkinson EJ, Larson JJ, et al. Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction. Hepatology. 2010;52(1):223–9.

    Article  CAS  Google Scholar 

  90. Sun X, Lu Q, Mukheerjee S, Crane PK, Elston R, Ritchie MD. Analysis pipeline for the epistasis search – statistical versus biological filtering. Front Genet. 2014;5(APR):1–7.

    Google Scholar 

  91. Howel D, Fischbacher CM, Bhopal RS, Gray J, Metcalf JV, James OFW. An exploratory population-based case-control study of primary biliary cirrhosis. Hepatology. 2000;31(5):1055–60.

    Article  CAS  Google Scholar 

  92. Burroughs AK, Rosenstein IJ, Epstein O, Hamilton-Miller JMT, Brumfitt W, Sherlock S. Bacteriuria and primary biliary cirrhosis. Gut. 1984;25(study IV):133–7.

    Article  CAS  Google Scholar 

  93. Hirschfield GM, Gershwin ME. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol [Internet] 2013;8(Il):303–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23347352

  94. Hormone-dependent MD, Markle JGM, Frank DN, et al. Sex differences in the gut. Science (80- ). 2013;339(March):1084–8.

    Google Scholar 

  95. Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut [Internet] 2018;67(3):534 LP – 541. Available from: http://gut.bmj.com/content/67/3/534.abstract

  96. Wei Y, Li Y, Yan L, et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 2019;1–9.

    Google Scholar 

  97. Quraishi MN, Sergeant M, Kay G, et al. The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut [Internet] 2017;66(2):386–8. Available from: http://gut.bmj.com/lookup/doi/10.1136/gutjnl-2016-311915

  98. Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science (80- ) [Internet] 2018;359(6380):1156–61. Available from: http://www.sciencemag.org/lookup/doi/10.1126/science.aar7201

  99. Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol [Internet] 2018;(October 2017):1–11. Available from: http://www.nature.com/doifinder/10.1038/cmi.2017.137

  100. Carnero-Montoro E, Alarcón-Riquelme ME. Epigenome-wide association studies for systemic autoimmune diseases: the road behind and the road ahead. Clin Immunol [Internet] 2018;(March):1–13. Available from: https://doi.org/10.1016/j.clim.2018.03.014

  101. Mok A, Solomon O, Nayak RR, et al. Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type 1 interferon responses. Lupus Sci Med [Internet] 2016;3(1):e000183. Available from: http://lupus.bmj.com/lookup/doi/10.1136/lupus-2016-000183

  102. Altorok N, Coit P, Hughes T, et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjögren’s syndrome. Arthritis Rheumatol [Internet] 2014;66(3):731–9. Available from: http://doi.wiley.com/10.1002/art.38264

  103. Glossop JR, Emes RD, Nixon NB, et al. Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics. 2014;9(9):1228–37.

    Article  Google Scholar 

  104. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol [Internet] 2016;16:626. Available from: https://doi.org/10.1038/nri.2016.90

  105. Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol [Internet] 2010;10:594. Available from: https://doi.org/10.1038/nri2815

  106. Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M. Is autoimmunity a matter of sex? Autoimmun Rev. 2008;7(8):626–30.

    Article  CAS  Google Scholar 

  107. Tukiainen T, Villani A-C, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature [Internet] 2017;550:244. Available from: https://doi.org/10.1038/nature24265

  108. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature [Internet] 2005;434:400. Available from: https://doi.org/10.1038/nature03479

  109. Takeno M, Nagafuchi H, Kaneko S, et al. Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J Immunol [Internet] 1997;158(7):3529 LP – 3538. Available from: http://www.jimmunol.org/content/158/7/3529.abstract

  110. Zeynep Ö, Sevgi B, Sedat K, et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum [Internet] 2005;52(5):1564–70. Available from: https://doi.org/10.1002/art.21026

  111. Miozzo M, Selmi C, Gentilin B, et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology. 2007;46(2):456–62.

    Article  CAS  Google Scholar 

  112. Lleo A, Liao J, Invernizzi P, et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology. 2012;55(1):153–60.

    Article  CAS  Google Scholar 

  113. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet [Internet] 2011;12(12):861–74. Available from: https://doi.org/10.1038/nrg3074

  114. Migita K, Komori A, Kozuru H, et al. Circulating microRNA profiles in patients with Type-1 autoimmune hepatitis. PLoS One [Internet] 2015;10(11):e0136908. Available from: https://doi.org/10.1371/journal.pone.0136908

  115. Rodrigues PM, Perugorria MJ, Santos-Laso A, Bujanda L, Beuers U, Banales JM. Primary biliary cholangitis: a tale of epigenetically-induced secretory failure? J Hepatol [Internet] 2018.;Available from: http://www.sciencedirect.com/science/article/pii/S0168827818323626

  116. Bernuzzi F, Marabita F, Lleo A, et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol [Internet] 2016;185(1):61–71. Available from: https://doi.org/10.1111/cei.12776

  117. Banales JM, Sáez E, Úriz M, et al. Up-regulation of microRNA 506 leads to decreased Cl -/HCO 3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56(2):687–97.

    Article  CAS  Google Scholar 

  118. Hublin JJ. The origin of Neanderthals. Proc Natl Acad Sci U S A [Internet] 2009;106(38):16022–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19805257

  119. Green, R.E., Krause, J., Briggs, A., W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H., Hansen, N.F., Durand, E., Y., Malaspinas, A., Jensen, J., D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano HA. A Draft sequence of the neandertal genome. Science [Internet] 2010;328(5979):710–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20448178

  120. Sankararaman S, Mallick S, Dannemann M, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature [Internet] 2014;507:354. Available from: https://doi.org/10.1038/nature12961

  121. Vernot B, Akey JM. Resurrecting surviving Neandertal lineages from modern human genomes. Science (80- ) [Internet] 2014;343(6174):1017 LP – 1021. Available from: http://science.sciencemag.org/content/343/6174/1017.abstract

  122. Reich D, Patterson N, Kircher M, et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet. 2011;89(4):516–28.

    Article  CAS  Google Scholar 

  123. Slon V, Mafessoni F, Vernot B, et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature [Internet] 2018;561(7721):113–6. Available from: https://doi.org/10.1038/s41586-018-0455-x

  124. Jacobs GS, Hudjashov G, Saag L, et al. Multiple Deeply Divergent Denisovan Ancestries in Papuans. Cell [Internet] 2019.;Available from: https://doi.org/10.1016/j.cell.2019.02.035

  125. Dannemann M, Andrés AM, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am J Hum Genet. 2016;98, 22(1):–33.

    Google Scholar 

  126. Enard D, Petrov DA. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell [Internet] 2018;175(2):360–371.e13. Available from: https://doi.org/10.1016/j.cell.2018.08.034

  127. Consortium TST 2 D, Williams AL, Jacobs SBR, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature [Internet] 2013;506:97. Available from: https://doi.org/10.1038/nature12828

  128. Schrider DR, Kern AD. Supervised machine learning for population genetics: a new paradigm. Trends Genet [Internet] 2018;34(4):301–12. Available from: https://doi.org/10.1016/j.tig.2017.12.005

  129. Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for precision medicine. Front Genet [Internet] 2019;10(March):1–10. Available from: https://www.frontiersin.org/article/10.3389/fgene.2019.00267/full

  130. Grabowski P, Rappsilber J. A primer on data analytics in functional genomics: how to move from data to insight? Trends Biochem Sci [Internet] 2019;44(1):21–32. Available from: https://doi.org/10.1016/j.tibs.2018.10.010

  131. Okser S, Pahikkala T, Airola A, Salakoski T, Ripatti S, Aittokallio T. Regularized machine learning in the genetic prediction of complex traits. PLoS Genet [Internet] 2014;10(11):e1004754. Available from: https://dx.plos.org/10.1371/journal.pgen.1004754

  132. Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet. 2009;10(6):392–404.

    Article  CAS  Google Scholar 

  133. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet [Internet] 2019;51(1):12–8. Available from: https://doi.org/10.1038/s41588-018-0295-5

  134. Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun. 2013;46:41–54.

    Article  CAS  Google Scholar 

  135. Joshita S, Umemura T, Tanaka E, Ota M. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis. Clin J Gastroenterol. 2018;11(1):11–8.

    Article  Google Scholar 

  136. Kawashima M, Hitomi Y, Aiba Y, et al. Genome-wide association studies identify PRKCB as a novel genetic susceptibility locus for primary biliary cholangitis in the Japanese population. Hum Mol Genet [Internet] 2017;26(3):650–9. Available from: https://doi.org/10.1093/hmg/ddw406

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Invernizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerussi, A., Carbone, M., Asselta, R., Invernizzi, P. (2020). Genetics of Autoimmune Liver Diseases. In: Gershwin, M.E., M. Vierling, J., Tanaka, A., P. Manns, M. (eds) Liver Immunology . Springer, Cham. https://doi.org/10.1007/978-3-030-51709-0_5

Download citation

Publish with us

Policies and ethics