Skip to main content

Microbial Metabolomics: From Methods to Translational Applications

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

Most microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches. As a novel strategy for analysis of metabolomes in microbes, microbial metabolomics has been recently used to study many diseases, such as obesity, urinary tract infection (UTI), and hepatitis C. In this chapter, we attempt to introduce various microbial metabolomics methods to better interpret the microbial metabolism underlying a diversity of infectious diseases and inspire scientists to pay more attention to microbial metabolomics, enabling broadly and efficiently its translational applications to infectious diseases, from molecular diagnosis to therapeutic discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cani, P. D., & Jordan, B. F. (2018). Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer. Nature Reviews Gastroenterology & Hepatology, 15(11), 671–682.

    Article  CAS  Google Scholar 

  2. Chen, S. L., Wu, M., Henderson, J. P., Hooton, T. M., Hibbing, M. E., Hultgren, S. J., & Gordon, J. I. (2013). Genomic diversity and fitness of E. Coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Science Translational Medicine, 5, 160r–184r.

    Article  CAS  Google Scholar 

  3. Saccenti, E., & Timmerman, M. E. (2016). Approaches to sample size determination for multivariate data: Applications to PCA and PLS-DA of omics data. Journal of Proteome Research, 15, 2379–2393.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y., Lin, L., Xu, Y., Lin, Y., Jin, Y., & Zheng, C. (2013). 1h NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis. Biochemical and Biophysical Research Communications, 433, 547–551.

    Article  CAS  PubMed  Google Scholar 

  5. Mamas, M., Dunn, W. B., Neyses, L., & Goodacre, R. (2011). The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 85, 5–17.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J., Wang, C., Liu, H., Qi, H., Chen, H., & Wen, J. (2018). Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology. Critical Reviews in Biotechnology, 38, 1–15.

    Article  CAS  Google Scholar 

  7. Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia, D. E., Baidoo, E. E., Benke, P. I., Pingitore, F., Tang, Y. J., Villa, S., & Keasling, J. D. (2008). Separation and mass spectrometry in microbial metabolomics. Current Opinion in Microbiology, 11, 233–239.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, X., Yu, H., Ba, Z., Chen, J., Sun, H., & Han, B. (2010). Sampling methods for NMR-based metabolomics of Staphylococcus Aureus. Biotechnology Journal, 5, 75–84.

    Article  CAS  PubMed  Google Scholar 

  10. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. TrAC Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  11. Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnology Letters, 29, 1–16.

    Article  CAS  PubMed  Google Scholar 

  12. Cortina, N. S., Krug, D., Plaza, A., Revermann, O., & Müller, R. (2012). Myxoprincomide: A natural product from Myxococcus Xanthus discovered by comprehensive analysis of the secondary metabolome. Angewandte Chemie International Edition, 51, 811–816.

    Article  CAS  PubMed  Google Scholar 

  13. Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. A., & Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME Journal, 7, 1933–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Southam, A. D., Weber, R. J., Engel, J., Jones, M. R., & Viant, M. R. (2016). A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nature Protocols, 12, 310–328.

    Article  PubMed  CAS  Google Scholar 

  15. Cloarec, O., Dumas, M.-E., Craig, A., Barton, R. H., Trygg, J., Hudson, J., Blancher, C., Gauguier, D., Lindon, J. C., Holmes, E., & Nicholson, J. (2005). Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77(5), 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  16. Lv, H. (2013). Mass spectrometry-based metabolomics towards understanding of gene functions with a diversity of biological contexts. Mass Spectrometry Reviews, 32, 118–128.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C., Li, M., Jiang, H., Tong, H., Feng, Y., Wang, Y., Pi, X., Guo, L., Nie, M., Feng, H., & Li, E. (2016). Comparative analysis of VOCs in exhaled breath of amyotrophic lateral sclerosis and cervical spondylotic myelopathy patients. Science Reports-UK, 6, 26120.

    Article  CAS  Google Scholar 

  18. Frolkis, A., Knox, C., Lim, E., Jewison, T., Law, V., Hau, D. D., Liu, P., Gautam, B., Ly, S., Guo, A. C., Xia, J., Liang, Y., Shrivastava, S., & Wishart, D. S. (2010). SMPDB: The small molecule pathway database. Nucleic Acids Research, 38, D480–D487.

    Article  CAS  PubMed  Google Scholar 

  19. Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., Hermjakob, H., D’Eustachio, P., & Stein, L. (2010). Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Research, 39, D691–D697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Joshi-Tope, G. (2004). Reactome: A knowledgebase of biological pathways. Nucleic Acids Research, 33, D428–D432.

    Article  PubMed Central  Google Scholar 

  21. Kanehisa, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, 277D–280D.

    Article  CAS  Google Scholar 

  22. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2013). Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Research, 42, D199–D205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Karp, P. D. (2005). Expansion of the biocyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research, 33, 6083–6089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia, J., & Wishart, D. S. (2010). MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26, 2342–2344.

    Article  CAS  PubMed  Google Scholar 

  25. Krummenacker, M., Paley, S., Mueller, L., Yan, T., & Karp, P. D. (2005). Querying and computing with biocyc databases. Bioinformatics, 21, 3454–3455.

    Article  CAS  PubMed  Google Scholar 

  26. Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743–760.

    Article  CAS  PubMed  Google Scholar 

  27. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neuweger, H., Albaum, S. P., Dondrup, M., Persicke, M., Watt, T., Niehaus, K., Stoye, J., & Goesmann, A. (2008). MeltDB: A software platform for the analysis and integration of metabolomics experiment data. Bioinformatics, 24, 2726–2732.

    Article  CAS  PubMed  Google Scholar 

  29. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., MacInnis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J., & Querengesser, L. (2007). HMDB the human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guijas, C., Montenegro-Burke, J. R., Domingo-Almenara, X., Palermo, A., Warth, B., Hermann, G., Koellensperger, G., Huan, T., Uritboonthai, W., Aisporna, A. E., Wolan, D. W., Spilker, M. E., Benton, H. P., & Siuzdak, G. (2018). Metlin: A technology platform for identifying knowns and unknowns. Analytical Chemistry, 90, 3156–3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., Eghbalnia, H. R., Sussman, M. R., & Markley, J. L. (2008). Metabolite identification via the Madison metabolomics consortium database. Nature Biotechnology, 26, 162–164.

    Article  CAS  PubMed  Google Scholar 

  32. Lv, H., Hung, C. S., Chaturvedi, K. S., Hooton, T. M., & Henderson, J. P. (2011). Development of an integrated metabolomic profiling approach for infectious diseases research. The Analyst, 136, 4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lam, C., Law, C., Sze, K., & To, K. K. (2015). Quantitative metabolomics of urine for rapid etiological diagnosis of urinary tract infection: Evaluation of a microbial-mammalian co-metabolite as a diagnostic biomarker. Clinica Chimica Acta, 438, 24–28.

    Article  CAS  Google Scholar 

  34. Lin, Z., Ye, W., Zu, X., Xie, H., Li, H., Li, Y., & Zhang, W. (2018). Integrative metabolic and microbial profiling on patients with spleen-yang-deficiency syndrome. Science Reports-UK, 8, 6619.

    Article  CAS  Google Scholar 

  35. Quinn, R. A., Phelan, V. V., Whiteson, K. L., Garg, N., Bailey, B. A., Lim, Y. W., Conrad, D. J., Dorrestein, P. C., & Rohwer, F. L. (2016). Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. The ISME Journal, 10, 1483–1498.

    Article  CAS  PubMed  Google Scholar 

  36. Preter, V. D., & Verbeke, K. (2013). Metabolomics as a diagnostic tool in gastroenterology. World Journal of Gastrointestinal Pharmacology and Therapeutics, 4, 97.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Walton, C., Fowler, D. P., Turner, C., Jia, W., Whitehead, R. N., Griffiths, L., Dawson, C., Waring, R. H., Ramsden, D. B., Cole, J. A., Cauchi, M., Bessant, C., & Hunter, J. O. (2013). Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflammatory Bowel Diseases, 19, 2069–2078.

    Article  PubMed  Google Scholar 

  38. Stephens, N. S., Siffledeen, J., Su, X., Murdoch, T. B., Fedorak, R. N., & Slupsky, C. M. (2013). Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. Journal of Crohn’s and Colitis, 7, e42–e48.

    Article  PubMed  Google Scholar 

  39. Ahmed, I., Greenwood, R., Costello, B. L., Ratcliffe, N. M., & Probert, C. S. (2013). An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One, 8, e58204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Overgaard, A. J., Weir, J. M., De Souza, D. P., Tull, D., Haase, C., Meikle, P. J., & Pociot, F. (2016). Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics, 12, 13.

    Article  PubMed  CAS  Google Scholar 

  41. Morowitz, M. J., Poroyko, V., Caplan, M., Alverdy, J., & Liu, D. C. (2010). Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis. Pediatrics, 125, 777–785.

    Article  PubMed  Google Scholar 

  42. Su, Q., Guan, T., & Lv, H. (2016). Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia Coli and human urine. Science Reports-UK, 6, 24099.

    Article  CAS  Google Scholar 

  43. Deatherage, K. B., Li, J., Sanford, J. A., Kim, Y. M., Kronewitter, S. R., Jones, M. B., Peterson, C. T., Peterson, S. N., Frank, B. C., Purvine, S. O., Brown, J. N., Metz, T. O., Smith, R. D., Heffron, F., & Adkins, J. N. (2013). A multi-omic view of host-pathogen-commensal interplay in salmonella-mediated intestinal infection. PLoS One, 8, e67155.

    Article  CAS  Google Scholar 

  44. Sun, H., Zhang, A., Yan, G., Piao, C., Li, W., Sun, C., Wu, X., Li, X., Chen, Y., & Wang, X. (2013). Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews. Molecular & Cellular Proteomics, 12, 710–719.

    Article  CAS  Google Scholar 

  45. Al-Mubarak, R., Vander, H. J., Broeckling, C. D., Balagon, M., Brennan, P. J., & Vissa, V. D. (2011). Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: Potential markers for susceptibility and pathogenesis. PLoS Neglected Tropical Diseases, 5, e1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lobritz, M. A., Belenky, P., Porter, C. B. M., Gutierrez, A., Yang, J. H., Schwarz, E. G., Dwyer, D. J., Khalil, A. S., & Collins, J. J. (2015). Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences, 112, 8173–8180.

    Article  CAS  Google Scholar 

  48. Stipetic, L. H., Dalby, M. J., Davies, R. L., Morton, F. R., Ramage, G., & Burgess, K. E. V. (2016). A novel metabolomic approach used for the comparison of Staphylococcus Aureus planktonic cells and biofilm samples. Metabolomics, 12, 1.

    Article  CAS  Google Scholar 

  49. Hess, D. J., Henry-Stanley, M. J., Lusczek, E. R., Beilman, G. J., & Wells, C. L. (2013). Anoxia inhibits biofilm development and modulates antibiotic activity. The Journal of Surgical Research, 184, 488–494.

    Article  CAS  PubMed  Google Scholar 

  50. Guiton, P. S., Cusumano, C. K., Kline, K. A., Dodson, K. W., Han, Z., Janetka, J. W., Henderson, J. P., Caparon, M. G., & Hultgren, S. J. (2012). Combinatorial small-molecule therapy prevents uropathogenic Escherichia Coli catheter-associated urinary tract infections in mice. Antimicrobial Agents Chemotherapy, 56, 4738–4745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zampieri, M., Zimmermann, M., Claassen, M., & Sauer, U. (2017). Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Reports, 19, 1214–1228.

    Article  CAS  PubMed  Google Scholar 

  52. Rees, C. A., Smolinska, A., & Hill, J. E. (2016). The volatile metabolome of Klebsiella Pneumoniae in human blood. Journal of Breath Research, 10, 27101.

    Article  CAS  Google Scholar 

  53. Li, H., Xia, X., Li, X., Naren, G., Fu, Q., Wang, Y., Wu, C., Ding, S., Zhang, S., Jiang, H., Li, J., & Shen, J. (2014). Untargeted metabolomic profiling of amphenicol-resistant campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry. Journal of Proteome Research, 14, 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  54. Aminov, R. (2017). History of antimicrobial drug discovery: Major classes and health impact. Biochemical Pharmacology, 133, 4–19.

    Article  CAS  PubMed  Google Scholar 

  55. Dodds, D. R. (2017). Antibiotic resistance: a current epilogue. Biochemical Pharmacology, 134, 139–146.

    Article  CAS  PubMed  Google Scholar 

  56. de la Fuente-Nunez, C., Torres, M. D., Mojica, F. J., & Lu, T. K. (2017). Next-generation precision antimicrobials: Towards personalized treatment of infectious diseases. Current Opinion in Microbiology, 37, 95–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vincent, I. M., & Barrett, M. P. (2015). Metabolomic-based strategies for anti-parasite drug discovery. Journal of Biomolecular Screening, 20, 44–55.

    Article  PubMed  CAS  Google Scholar 

  58. Yoshikawa, T. T. (2002). Antimicrobial resistance and aging: Beginning of the end of the antibiotic era? Journal of the American Geriatrics Society, 50, S226–S229.

    Article  PubMed  Google Scholar 

  59. Sajjan, U. S., Tran, L. T., Sole, N., Rovaldi, C., Akiyama, A., Friden, P. M., Forstner, J. F., & Rothstein, D. M. (2001). P-113d, an antimicrobial peptide active against Pseudomonas Aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrobial Agents and Chemotherapy, 45, 3437–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paton, A. W., Morona, R., & Paton, J. C. (2012). Bioengineered microbes in disease therapy. Trends in Molecular Medicine, 18, 417–425.

    Article  CAS  PubMed  Google Scholar 

  61. Duan, F., & March, J. C. (2010). Engineered bacterial communication prevents vibrio cholerae virulence in an infant mouse model. Proceedings of the National Academy of Sciences, 107, 11260–11264.

    Article  CAS  Google Scholar 

  62. Hamblin, M. R., & Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 3, 436–450.

    Article  CAS  Google Scholar 

  63. Friedberg, J. S., Skema, C., Baum, E. D., Burdick, J., Vinogradov, S. A., Wilson, D. F., Horan, A. D., & Nachamkin, I. (2001). In vitro effects of photodynamic therapy on Aspergillus Fumigatus. Journal of Antimicrobial Chemotherapy, 48, 105–107.

    Article  CAS  Google Scholar 

  64. Grellier, P., Santus, R., Mouray, E., Agmon, V., Maziere, J. C., Rigomier, D., Dagan, A., Gatt, S., & Schrevel, J. (1997). Photosensitized inactivation of plasmodium falciparum- and babesia divergens-infected erythrocytes in whole blood by lipophilic pheophorbide derivatives. Vox Sanguinis, 72, 211–220.

    Article  CAS  PubMed  Google Scholar 

  65. Cerveny, K. E., DePaola, A., Duckworth, D. H., & Gulig, P. A. (2002). Phage therapy of local and systemic disease caused by vibrio vulnificus in iron-dextran-treated mice. Infection and Immunity, 70, 6251–6262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, L., Nie, W., Parker, T., Upton, Z., & Lu, H. (2013). MS-based metabolomics facilitates the discovery of in vivo functional small molecules with a diversity of biological contexts. Future Medicinal Chemistry, 5, 1953–1965.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2017YFC1308600 and 2017YFC1308605), the National Natural Science Foundation of China Grants (No. 81274175 and 31670031), the Startup Funding for Specialized Professorship Provided by Shanghai Jiao Tong University (No. WF220441502), and the Fundamental Research Funds for the Central Universities (grant no. 106112015CDJZR468808).

Declarations of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, R., Luo, X., Xin, X., Liu, L., Wang, X., Lu, H. (2021). Microbial Metabolomics: From Methods to Translational Applications. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_7

Download citation

Publish with us

Policies and ethics