Skip to main content

Metabolomics of Oral/Head and Neck Cancer

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

Oral/head and neck cancer is the sixth most common human malignancies in the world. Despite the treatment advances in surgery, chemotherapy, and radiotherapy, the patient survival has not been significantly improved in the past several decades. As a new methodological approach, metabolomics may help reveal the metabolic reprogramming mechanisms underlying head and neck cancer cell proliferation, invasion, and metastasis and may be used to identify metabolite biomarkers for clinical applications of the disease. In this chapter, we briefly review recent metabolomic applications in head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre, L. A., et al. (2012). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108.

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  3. Gillison, M. L., Broutian, T., Pickard, R. K., et al. (2012). Prevalence of oral HPV infection in the United States, 2009–2010. Journal of the American Medical Association, 307(7), 693–703.

    Article  CAS  PubMed  Google Scholar 

  4. Marur, S., & Forastiere, A. A. (2008). Head and neck cancer: Changing epidemiology, diagnosis, and treatment. Mayo Clinic Proceedings, 83(4), 489–501.

    Article  PubMed  Google Scholar 

  5. Tiziani, S., Lopes, V., & Gunther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia, 11(3), 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahlberg, A., Engström, T., Nikolaidis, P., et al. (2011). Early self-care rehabilitation of head and neck cancer patients. Acta Oto-Laryngologica, 131(5), 552–561.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kofler, B., Laban, S., Busch, C. J., Lörincz, B., & Knecht, R. (2014). New treatment strategies for HPV-positive head and neck cancer. European Archives of Oto-Rhino-Laryngology, 271(7), 1861–1867.

    Article  CAS  PubMed  Google Scholar 

  8. Pfister, D. G., Ang, K. K., Brizel, D. M., et al. (2013). National Comprehensive Cancer Network. Head and neck cancers, version 2.2013: Featured updates to the NCCN guidelines. Journal of the National Comprehensive Cancer Network, 11(8), 917–923.

    Article  PubMed  Google Scholar 

  9. Langendijk, J. A., Doornaert, P., Verdonck-de Leeuw, I. M., Leemans, C. R., Aaronson, N. K., & Slotman, B. J. (2008). Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. Journal of Clinical Oncology, 26(22), 3770–3776.

    Article  PubMed  Google Scholar 

  10. Pignon, J. P., Bourhis, J., Domenge, C., Designé, L., & MACH-NC Collaborative Group. (2000). Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. Lancet, 355(9208), 949–955.

    Article  CAS  PubMed  Google Scholar 

  11. Cancer Genome Atlas Network. (2015). Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517(7536), 576–582.

    Article  CAS  Google Scholar 

  12. Lechner, M., Frampton, G. M., Fenton, T., et al. (2013). Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV− tumors. Genome Medicine, 5(5), 49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burtness, B., Bauman, J. E., & Galloway, T. (2013). Novel targets in HPV-negative head and neck cancer: Overcoming resistance to EGFR inhibition. The Lancet Oncology, 14(8), e302–e309.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, E. E., Kane, M. A., List, M. A., et al. (2005). Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clinical Cancer Research, 11(23), 8418–8424.

    Article  CAS  PubMed  Google Scholar 

  15. Alfieri, S., Cavalieri, S., & Licitra, L. (2018). Immunotherapy for recurrent/metastatic head and neck cancer. Current Opinion in Otolaryngology & Head and Neck Surgery, 26(2), 152–156.

    Article  Google Scholar 

  16. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  17. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, J., King, R. D., Altmann, T., & Fiehn, O. (2002). Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18(Suppl 2), S241–S248.

    Article  PubMed  Google Scholar 

  19. Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabolomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1(2), 153–161.

    Article  CAS  PubMed  Google Scholar 

  20. Chetwynd, A. J., Abdul-Sada, A., & Hill, E. M. (2015). Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Analytical Chemistry, 87(2), 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  21. Dunn, W. B., Bailey, N. J., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. The Analyst, 130(5), 606–625.

    Article  CAS  PubMed  Google Scholar 

  22. O’Connell, T. M. (2012). Recent advances in metabolomics in oncology. Bioanalysis, 4(4), 431–451.

    Article  PubMed  CAS  Google Scholar 

  23. Somashekar, B. S., Kamarajan, P., Danciu, T., Kapila, Y. L., Chinnaiyan, A. M., Rajendiran, T. M., & Ramamoorthy, A. (2011). Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. Journal of Proteome Research, 10(11), 5232–5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Drexler, D. M., Reily, M. D., & Shipkova, P. A. (2011). Advances in mass spectrometry applied to pharmaceutical metabolomics. Analytical and Bioanalytical Chemistry, 399(8), 2645–2653.

    Article  CAS  PubMed  Google Scholar 

  25. Asiago, V. M., Alvarado, L. Z., Shanaiah, N., et al. (2010). Early detection of recurrent breast cancer using metabolite profiling. Cancer Research, 70(21), 8309–8318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Büscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143.

    Article  PubMed  CAS  Google Scholar 

  27. Kaushik, A. K., & DeBerardinis, R. J. (2018). Applications of metabolomics to study cancer metabolism. Biochimica Et Biophysica Acta. Reviews on Cancer, 1870(1), 2–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu, S., Loo, J. A., & Wong, D. T. (2006). Human body fluid proteome analysis. Proteomics, 6(23), 6326–6353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, S., Loo, J. A., & Wong, D. T. (2007). Human saliva proteome analysis and disease biomarker discovery. Expert Review of Proteomics, 4(4), 531–538.

    Article  CAS  PubMed  Google Scholar 

  30. Aps, J. K., & Martens, L. C. (2005). Review: The physiology of saliva and transfer of drugs into saliva. Forensic Science International, 150, 119–131.

    Article  CAS  PubMed  Google Scholar 

  31. Soini, H. A., Klouckova, I., Wiesler, D., Oberzaucher, E., Grammer, K., Dixon, S. J., et al. (2010). Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. Journal of Chemical Ecology, 36, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  32. Cui, L., Zhao, X., & Hu, S. (2019). Determination of autoantibodies to salivary gland antigens. Methods in Molecular Biology, 1901, 103–112.

    Article  CAS  PubMed  Google Scholar 

  33. Ji, E. H., Diep, C., Liu, T., et al. (2017). Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics. Molecular Pain, 13, 1744806916686796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hu, S., Vissink, A., Arellano, M., et al. (2011). Identification of autoantibody biomarkers for primary Sjögren’s syndrome using protein microarrays. Proteomics, 11(8), 1499–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, S., Gao, K., Pollard, R., et al. (2010). Preclinical validation of salivary biomarkers for primary Sjögren’s syndrome. Arthritis Care Res (Hoboken), 62(11), 1633–1638.

    Article  CAS  Google Scholar 

  36. Hu, S., Wang, J., Meijer, J., et al. (2007). Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis and Rheumatism, 56(11), 3588–3600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, S., Arellano, M., Boontheung, P., et al. (2008). Salivary proteomics for oral cancer biomarker discovery. Clinical Cancer Research, 14(19), 6246–6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui, L., Liu, J., Yan, X., & Hu, S. (2017). Identification of metabolite biomarkers for gout using capillary ion chromatography with mass spectrometry. Analytical Chemistry, 89(21), 11737–11743.

    Article  CAS  PubMed  Google Scholar 

  39. Yan, S. K., Wei, B. J., Lin, Z. Y., et al. (2008). A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncology, 44(5), 477–483.

    Article  CAS  PubMed  Google Scholar 

  40. Sugimoto, M., Wong, D. T., Hirayama, A., et al. (2010). Capillary electrophoresis mass spectrometry – based saliva metabolomics identified oral, breast and pancreatic cancer – specific profiles. Metabolomics, 6(1), 78–95.

    Google Scholar 

  41. Ishikawa, S., Sugimoto, M., Kitabatake, K., et al. (2017). Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids, 49(4), 761–770.

    Article  CAS  PubMed  Google Scholar 

  42. Ishikawa, S., Sugimoto, M., Kitabatake, K., et al. (2016). Identification of salivary metabolomic biomarkers for oral cancer screening. Scientific Reports, 6, 31520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohshima, M., Sugahara, K., Kasahara, K., & Katakura, A. (2017). Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncology Reports, 37(5), 2727–2734.

    Article  CAS  PubMed  Google Scholar 

  44. Wei, J., Xie, G., Zhou, Z., et al. (2011). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129(9), 2207–2217.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Q., Gao, P., Wang, X., & Duan, Y. (2014). The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Scientific Reports, 4, 6802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lohavanichbutr, P., Zhang, Y., Wang, P., et al. (2018). Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS One, 13(9), e0204249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shigeyama, H., Wang, T., Ichinose, M., Ansai, T., & Lee, S. W. (2019). Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC-MS. Journal of Chromatography. B. Analytical Technologies in the Biomedical and Life Sciences, 1104, 49–58.

    Article  CAS  PubMed  Google Scholar 

  48. Mikkonen, J. J. W., Singh, S. P., Akhi, R., et al. (2018). Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer. Oncology Letters, 16(5), 6795–6800.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Grimaldi, M., Palisi, A., Rossi, G., et al. (2018). Saliva of patients affected by salivary gland tumour: An NMR metabolomics analysis. Journal of Pharmaceutical and Biomedical Analysis, 160, 436–442.

    Article  CAS  PubMed  Google Scholar 

  50. Zhong, L., Cheng, F., Lu, X., Duan, Y., & Wang, X. (2016). Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta, 158, 351–360.

    Article  CAS  PubMed  Google Scholar 

  51. Takayama, T., Tsutsui, H., Shimizu, I., et al. (2016). Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clinica Chimica Acta, 452, 18–26.

    Article  CAS  Google Scholar 

  52. Cavaco, C., Pereira, J. A. M., Taunk, K., et al. (2018). Screening of salivary volatiles for putative breast cancer discrimination: An exploratory study involving geographically distant populations. Analytical and Bioanalytical Chemistry, 410(18), 4459–4468.

    Article  CAS  PubMed  Google Scholar 

  53. Asai, Y., Itoi, T., Sugimoto, M., et al. (2018). Elevated polyamines in saliva of pancreatic cancer. Cancers (Basel), 10(2), 43.

    Article  CAS  Google Scholar 

  54. Tiziani, S., Lopes, V., & Günther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia, 11(3), 269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bag, S., Banerjee, D. R., Basak, A., et al. (2015). NMR ((1)H and (13)C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect. Biochemical and Biophysical Research Communications, 459(4), 574–578.

    Article  CAS  PubMed  Google Scholar 

  56. Gupta, A., Gupta, S., & Mahdi, A. A. (2015). 1H NMR-derived serum metabolomics of leukoplakia and squamous cell carcinoma. Clinica Chimica Acta, 441, 47–55.

    Article  CAS  Google Scholar 

  57. Zhang, J., Bowers, J., Liu, L., et al. (2012). Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One, 7(1), e30181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, X., Xu, L., Shen, J., et al. (2013). Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica et Biophysica Acta, 1832(8), 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  59. Wojtowicz, W., Zabek, A., Deja, S., et al. (2017). Serum and urine 1H NMR-based metabolomics in the diagnosis of selected thyroid diseases. Scientific Reports, 7(1), 9108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang, B., Zhang, L. Y., Wang, S. S., Yang, Y. H., & Zhao, W. X. (2018). NMR-based metabolomics to select a surgical method for treating papillary thyroid carcinoma. Clinics (São Paulo, Brazil), 73, e333.

    Google Scholar 

  61. Boguszewicz, Ł., Bieleń, A., Mrochem-Kwarciak, J., et al. (2019). NMR-based metabolomics in real-time monitoring of treatment induced toxicity and cachexia in head and neck cancer: A method for early detection of high risk patients. Metabolomics, 15(8), 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, X., Hou, H., Chen, H., Liu, Y., Wang, A., & Hu, Q. (2018). Serum metabolomics of laryngeal cancer based on liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomedical Chromatography, 32(5), e4181.

    Article  PubMed  CAS  Google Scholar 

  63. Sridharan, G., Ramani, P., & Patankar, S. (2017). Serum metabolomics in oral leukoplakia and oral squamous cell carcinoma. Journal of Cancer Research and Therapeutics, 13(3), 556–561.

    CAS  PubMed  Google Scholar 

  64. Shen, C. T., Zhang, Y., Liu, Y. M., et al. (2017). A distinct serum metabolic signature of distant metastatic papillary thyroid carcinoma. Clinical Endocrinology, 87(6), 844–852.

    Article  CAS  PubMed  Google Scholar 

  65. Mir, S. A., Rajagopalan, P., Jain, A. P., et al. (2015). LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma. Journal of Proteomics, 127(Pt A), 96–102.

    Article  CAS  PubMed  Google Scholar 

  66. Gu, J., Liang, D., Pierzynski, J. A., et al. (2017). D-mannose: A novel prognostic biomarker for patients with esophageal adenocarcinoma. Carcinogenesis, 38(2), 162–167.

    CAS  PubMed  Google Scholar 

  67. Jin, H., Qiao, F., Chen, L., Lu, C., Xu, L., & Gao, X. (2014). Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. Journal of Proteome Research, 13(9), 4091–4103.

    Article  CAS  PubMed  Google Scholar 

  68. Chen, J., Hou, H., Chen, H., et al. (2019). Urinary metabolomics for discovering metabolic biomarkers of laryngeal cancer using UPLC-QTOF/MS. Journal of Pharmaceutical and Biomedical Analysis, 167, 83–89.

    Article  CAS  PubMed  Google Scholar 

  69. Xu, J., Li, J., Zhang, R., et al. (2019). Development of a metabolic pathway-based pseudo-targeted metabolomics method using liquid chromatography coupled with mass spectrometry. Talanta, 192, 160–168.

    Article  CAS  PubMed  Google Scholar 

  70. Dunn, W. B., Broadhurst, D., Begley, P., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  71. Want, E. J., Wilson, I. D., Gika, H., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5(6), 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  72. Chan, E. C., Pasikanti, K. K., & Nicholson, J. K. (2011). Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nature Protocols, 6(10), 1483–1499.

    Article  CAS  PubMed  Google Scholar 

  73. Beckonert, O., Keun, H. C., Ebbels, T. M., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692–2703.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, J., Christison, T. T., Misuno, K., et al. (2014). Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Analytical Chemistry, 86(10), 5116–5124.

    Article  CAS  PubMed  Google Scholar 

  75. Hu, S., Wang, J., Ji, E. H., Christison, T., Lopez, L., & Huang, Y. (2015). Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q exactive HF mass spectrometer. Analytical Chemistry, 87(12), 6371–6379.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, X., Brusadelli, M. G., Sauter, S., et al. (2018). Lipidomic profiling links the Fanconi Anemia pathway to glycosphingolipid metabolism in head and neck cancer cells. Clinical Cancer Research, 24(11), 2700–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tan, Z., Xiao, L., Tang, M., et al. (2018). Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics, 8(9), 2329–2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okazaki, S., Umene, K., Yamasaki, J., et al. (2019). Glutaminolysis-related genes determine sensitivity to xCT-targeted therapy in head and neck squamous cell carcinoma. Cancer Science, 110(11), 3453–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lindell Jonsson, E., Erngren, I., Engskog, M., et al. (2019). Exploring radiation response in two head and neck squamous carcinoma cell lines through metabolic profiling. Frontiers in Oncology, 9, 825.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sandulache, V. C., Ow, T. J., Pickering, C. R., et al. (2011). Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer, 117(13), 2926–2938.

    Article  CAS  PubMed  Google Scholar 

  81. Kitano, Y., Baba, Y., Nakagawa, S., et al. (2018). Nrf2 promotes oesophageal cancer cell proliferation via metabolic reprogramming and detoxification of reactive oxygen species. The Journal of Pathology, 244(3), 346–357.

    Article  CAS  PubMed  Google Scholar 

  82. Fu, J., Xiong, Z., Huang, C., et al. (2019). Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus. The Journal of Biological Chemistry, 294(1), 327–340.

    Article  CAS  PubMed  Google Scholar 

  83. Sun, C., Li, T., Song, X., et al. (2019). Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proceedings of the National Academy of Sciences of the United States of America, 116(1), 52–57.

    Article  CAS  PubMed  Google Scholar 

  84. Miccoli, P., Torregrossa, L., Shintu, L., et al. (2012). Metabolomics approach to thyroid nodules: A high-resolution magic-angle spinning nuclear magnetic resonance-based study. Surgery, 152(6), 1118–1124.

    Article  PubMed  Google Scholar 

  85. Torregrossa, L., Shintu, L., Nambiath Chandran, J., et al. (2012). Toward the reliable diagnosis of indeterminate thyroid lesions: A HRMAS NMR-based metabolomics case of study. Journal of Proteome Research, 11(6), 3317–3325.

    Article  CAS  PubMed  Google Scholar 

  86. Chen, M., Shen, M., Li, Y., et al. (2015). GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue. International Journal of Molecular Medicine, 36(6), 1607–1614.

    Article  PubMed  Google Scholar 

  87. Tian, Y., Nie, X., Xu, S., et al. (2015). Integrative metabonomics as potential method for diagnosis of thyroid malignancy. Scientific Reports, 5, 14869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wojakowska, A., Chekan, M., Marczak, Ł., et al. (2015). Detection of metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach. Molecular and Cellular Endocrinology, 417, 149–157.

    Article  CAS  PubMed  Google Scholar 

  89. Xu, Y., Zheng, X., Qiu, Y., Jia, W., Wang, J., & Yin, S. (2015). Distinct metabolomic profiles of papillary thyroid carcinoma and benign thyroid adenoma. Journal of Proteome Research, 14(8), 3315–3321.

    Article  CAS  PubMed  Google Scholar 

  90. Rezig, L., Servadio, A., Torregrossa, L., et al. (2018). Diagnosis of post-surgical fine-needle aspiration biopsies of thyroid lesions with indeterminate cytology using HRMAS NMR-based metabolomics. Metabolomics, 14(10), 141.

    Article  PubMed  CAS  Google Scholar 

  91. Huang, F. Q., Li, J., Jiang, L., et al. (2019). Serum-plasma matched metabolomics for comprehensive characterization of benign thyroid nodule and papillary thyroid carcinoma. International Journal of Cancer, 144(4), 868–876.

    Article  CAS  PubMed  Google Scholar 

  92. Ogawa, T., Washio, J., Takahashi, T., Echigo, S., & Takahashi, N. (2014). Glucose and glutamine metabolism in oral squamous cell carcinoma: Insight from a quantitative metabolomic approach. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 118(2), 218–225.

    Article  Google Scholar 

  93. Mukherjee, P. K., Funchain, P., Retuerto, M., et al. (2016). Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA Clinical, 7, 8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Musharraf, S. G., Shahid, N., Naqvi, S. M. A., Saleem, M., Siddiqui, A. J., & Ali, A. (2016). Metabolite profiling of Preneoplastic and neoplastic lesions of oral cavity tissue samples revealed a biomarker pattern. Scientific Reports, 6, 38985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kamarajan, P., Rajendiran, T. M., Kinchen, J., Bermúdez, M., Danciu, T., & Kapila, Y. L. (2017). Head and neck squamous cell carcinoma metabolism draws on Glutaminolysis, and Stemness is specifically regulated by Glutaminolysis via aldehyde dehydrogenase. Journal of Proteome Research, 16(3), 1315–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank for the financial support from the National Natural Science Foundation of China (81670946).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, G., Huang, J., Guo, W., Huang, Z. (2021). Metabolomics of Oral/Head and Neck Cancer. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_19

Download citation

Publish with us

Policies and ethics