Skip to main content

Capillary Electrophoresis-Mass Spectrometry for Cancer Metabolomics

  • Chapter
  • First Online:
Cancer Metabolomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1280))

Abstract

This chapter presents the fundamentals, instrumentation, methodology, and applications of capillary electrophoresis-mass spectrometry (CE-MS) for cancer metabolomics. CE offers fast and high-resolution separation of charged analytes from a very small amount of sample. When coupled to MS, it represents a powerful analytical technique enabling identification and quantification of metabolites in biological samples. Several issues need to be addressed when combining CE with MS, especially the interface between CE and MS and the selection of a proper separation methodology, sample pretreatment, and capillary coatings. We will discuss these aspects of CE-MS and detail representative applications for cancer metabolomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srivastava, A., & Creek, D. J. (2019). Discovery and validation of clinical biomarkers of cancer: A review combining metabolomics and proteomics. Proteomics, 19(10), e1700448.

    Article  PubMed  CAS  Google Scholar 

  2. Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223.

    Article  CAS  PubMed  Google Scholar 

  3. Belinato, J. R., et al. (2018). Opportunities for green microextractions in comprehensive two-dimensional gas chromatography/mass spectrometry-based metabolomics – A review. Analytica Chimica Acta, 1040, 1–18.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, W. J., et al. (2019). Advanced liquid chromatography-mass spectrometry enables merging widely targeted metabolomics and proteomics. Analytica Chimica Acta, 1069, 89–97.

    Article  CAS  PubMed  Google Scholar 

  5. Soga, T., et al. (2002). Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74(10), 2233–2239.

    Article  CAS  PubMed  Google Scholar 

  6. Garcia, A., et al. (2017). Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis, 9(1), 99–130.

    Article  CAS  PubMed  Google Scholar 

  7. Ramos-Payan, M., et al. (2018). Recent trends in capillary electrophoresis for complex samples analysis: A review. Electrophoresis, 39(1), 111–125.

    Article  CAS  PubMed  Google Scholar 

  8. Azab, S., Ly, R., & Britz-McKibbin, P. (2019). Robust method for high-throughput screening of fatty acids by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry with stringent quality control. Analytical Chemistry, 91(3), 2329–2336.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Q., et al. (2014). Pressurized CEC coupled with QTOF-MS for urinary metabolomics. Electrophoresis, 35(17), 2470–2478.

    Article  CAS  PubMed  Google Scholar 

  10. Ramautar, R., et al. (2012). Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis-mass spectrometry. Analytical Chemistry, 84(2), 885–892.

    Article  CAS  PubMed  Google Scholar 

  11. Baidoo, E. E., et al. (2008). Capillary electrophoresis-fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Analytical Chemistry, 80(9), 3112–3122.

    Article  CAS  PubMed  Google Scholar 

  12. Hirayama, A., Wakayama, M., & Soga, T. (2014). Metabolome analysis based on capillary electrophoresis-mass spectrometry. Trac-Trends in Analytical Chemistry, 61, 215–222.

    Article  CAS  Google Scholar 

  13. Liu, C. S., et al. (1998). On-line nonaqueous capillary electrophoresis and electrospray mass spectrometry of tricyclic antidepressants and metabolic profiling of amitriptyline by Cunninghamella elegans. Electrophoresis, 19(18), 3183–3189.

    Article  CAS  PubMed  Google Scholar 

  14. Britz-McKibbin, P. (2011). Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry (CE-ESI-MS)-based metabolomics. Metabolic Profiling: Methods and Protocols, 708, 229–246.

    Article  CAS  Google Scholar 

  15. Sun, L., et al. (2014). Over 10,000 peptide identifications from the HeLa proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry. Angewandte Chemie (International Ed. in English), 53(50), 13931–13933.

    Article  CAS  Google Scholar 

  16. Amenson-Lamar, E. A., et al. (2019). Detection of 1zmol injection of angiotensin using capillary zone electrophoresis coupled to a Q-Exactive HF mass spectrometer with an electrokinetically pumped sheath-flow electrospray interface. Talanta, 204, 70–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Z., et al. (2018). Production of over 27 000 peptide and nearly 4400 protein identifications by single-shot capillary-zone electrophoresis-mass spectrometry via combination of a very-low-electroosmosis coated capillary, a third-generation electrokinetically-pumped sheath-flow nanospray interface, an orbitrap fusion lumos tribrid mass spectrometer, and an advanced-peak-determination algorithm. Analytical Chemistry, 90(20), 12090–12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, C. C., Zhang, J., & Dovichi, N. J. (2005). A sheath-flow nanospray interface for capillary electrophoresis/mass spectrometry. Rapid Communications in Mass Spectrometry, 19(2), 187–192.

    Article  CAS  PubMed  Google Scholar 

  19. Timischl, B., et al. (2008). Development of a quantitative, validated capillary electrophoresis-time of flight-mass spectrometry method with integrated high-confidence analyte identification for metabolomics. Electrophoresis, 29(10), 2203–2214.

    Article  CAS  PubMed  Google Scholar 

  20. Kato, M., et al. (2009). A capillary electrochromatography-electron spray ionization-mass spectrometry method for simultaneous analysis of charged and neutral constituents of a hepatocarcinoma cell metabolome. Journal of Chromatography A, 1216(47), 8277–8282.

    Article  CAS  PubMed  Google Scholar 

  21. Sun, L., et al. (2015). Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. Journal of Proteome Research, 14(5), 2312–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarver, S. A., et al. (2017). Capillary electrophoresis coupled to negative mode electrospray ionization-mass spectrometry using an electrokinetically-pumped nanospray interface with primary amines grafted to the interior of a glass emitter. Talanta, 165, 522–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hocker, O., Montealegre, C., & Neususs, C. (2018). Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Analytical and Bioanalytical Chemistry, 410(21), 5265–5275.

    Article  PubMed  CAS  Google Scholar 

  24. Fang, P., Pan, J. Z., & Fang, Q. (2018). A robust and extendable sheath flow interface with minimal dead volume for coupling CE with ESI-MS. Talanta, 180, 376–382.

    Article  CAS  PubMed  Google Scholar 

  25. Moini, M. (2007). Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Analytical Chemistry, 79(11), 4241–4246.

    Article  CAS  PubMed  Google Scholar 

  26. Gulersonmez, M. C., et al. (2016). Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling. Electrophoresis, 37(7–8), 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama, A., et al. (2019). Extraction of aqueous metabolites from cultured adherent cells for metabolomic analysis by capillary electrophoresis-mass spectrometry. Jove-Journal of Visualized Experiments, 148.

    Google Scholar 

  28. Hirayama, A., et al. (2009). Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 69(11), 4918–4925.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, J.-L., et al. (2012). Urine metabolite profiling of human colorectal cancer by capillary electrophoresis mass spectrometry based on MRB. Gastroenterology Research and Practice, 2012, 125890–125890.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hirayama, A., Tomita, M., & Soga, T. (2012). Sheathless capillary electrophoresis-mass spectrometry with a high-sensitivity porous sprayer for cationic metabolome analysis. The Analyst, 137(21), 5026–5033.

    Article  CAS  PubMed  Google Scholar 

  31. Alberice, J. V., et al. (2013). Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. Journal of Chromatography A, 1318, 163–170.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, J., et al. (2019). Comprehensive profiling by non-targeted stable isotope tracing capillary electrophoresis-mass spectrometry: A new tool complementing metabolomic analyses of polar metabolites. Chemistry, 25(21), 5427–5432.

    Article  CAS  PubMed  Google Scholar 

  33. Asai, Y., et al. (2018). Elevated polyamines in saliva of pancreatic cancer. Cancers (Basel), 10(2).

    Google Scholar 

  34. Hirayama, A., et al. (2018). Development of a sheathless CE-ESI-MS interface. Electrophoresis, 39(11), 1382–1389.

    Article  CAS  PubMed  Google Scholar 

  35. Simo, C., et al. (2011). Is metabolomics reachable? Different purification strategies of human colon cancer cells provide different CE-MS metabolite profiles. Electrophoresis, 32(13), 1765–1777.

    CAS  PubMed  Google Scholar 

  36. Ibanez, C., et al. (2012). CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis, 33(15), 2328–2336.

    Article  CAS  PubMed  Google Scholar 

  37. Ishikawa, S., et al. (2016). Identification of salivary metabolomic biomarkers for oral cancer screening. Scientific Reports, 6, 31520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tokunaga, M., et al. (2018). Metabolome analysis of esophageal cancer tissues using capillary electrophoresis-time-of-flight mass spectrometry. International Journal of Oncology, 52(6), 1947–1958.

    CAS  PubMed  Google Scholar 

  39. MacLennan, M. S., et al. (2018). Capillary electrophoresis-mass spectrometry for targeted and untargeted analysis of the sub-5 kDa urine metabolome of patients with prostate or bladder cancer: A feasibility study. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1074, 79–85.

    Article  CAS  PubMed  Google Scholar 

  40. Gao, P., et al. (2017). Capillary electrophoresis – Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues. Analytical Biochemistry, 537, 1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Ibanez, C., et al. (2015). Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry: HT-29 cells as case study. Journal of Pharmaceutical and Biomedical Analysis, 110, 83–92.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng, J., et al. (2014). Metabolomics study of hepatocellular carcinoma: Discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. Journal of Proteome Research, 13(7), 3420–3431.

    Article  CAS  PubMed  Google Scholar 

  43. Lapainis, T., Rubakhin, S. S., & Sweedler, J. V. (2009). Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Analytical Chemistry, 81(14), 5858–5864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawai, T., et al. (2019). Ultrasensitive single cell metabolomics by capillary electrophoresis–mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration. Analytical Chemistry, 91(16), 10564–10572.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, X. (2021). Capillary Electrophoresis-Mass Spectrometry for Cancer Metabolomics. In: Hu, S. (eds) Cancer Metabolomics. Advances in Experimental Medicine and Biology, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-51652-9_13

Download citation

Publish with us

Policies and ethics