Skip to main content

The Use of Molecular Methods in Studies of Avian Haemosporidians

  • Chapter
  • First Online:
Avian Malaria and Related Parasites in the Tropics

Abstract

During the last two decades, molecular methods to study mitochondrial DNA sequence variation have become an important part in the studies of avian haemosporidians. Up until recently, these methods have primarily been used for identification of the parasites and for tentative phylogenetic reconstructions, allowing researchers not trained in traditional parasitology to compare data across the globe. However, with the introduction of genome and transcriptome sequencing, studies are emerging that go deeper into the genetics and molecular biology of the parasites. In this chapter, we describe and summarize the common methods used for genetic barcoding of the parasites and give an introduction of what to take into account when designing a molecular study of avian haemosporidians. This chapter further discusses why nuclear genetic data are needed in order to answer several important ecological and evolutionary questions and which methods to use in order to overcome the obstacles of obtaining nuclear data of the parasites. Finally, this chapter highlights the challenges and opportunities that come with the use of molecular methods, such as how to study and interpret prevalence, the challenge of aborted developments, and how to obtain data for more robust phylogenies and population structure studies of the parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Billker O, Morris HR et al (2001) Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasitol 116:17–24

    Article  CAS  PubMed  Google Scholar 

  • Asghar M, Hasselquist D, Bensch S (2011) Are chronic avian haemosporidian infections costly in wild birds? J Avian Biol 42:530–537

    Article  Google Scholar 

  • Babiker HA, Schneider P (2008) Application of molecular methods for monitoring transmission stages of malaria parasites. Biomed Mater 3:034007

    Article  PubMed  CAS  Google Scholar 

  • Barrow LN, Allen JM, Huang X et al (2019) Genomic sequence capture of haemosporidian parasites: methods and prospects for enhanced study of host-parasite evolution. Mol Ecol Resour 19:400–410

    Google Scholar 

  • Beadell JS, Fleischer RC (2005) A restriction enzyme-based assay to distinguish between avian hemosporidians. J Parasitol 91:683–685

    Article  CAS  PubMed  Google Scholar 

  • Beadell JS, Gering E, Austin J et al (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol 13:3829–3844

    Article  PubMed  Google Scholar 

  • Beadell JS, Ishtiaq F, Covas R et al (2006) Global phylogeographic limits of Hawaii's avian malaria. Proc R Soc Lond B 273:2935–2944

    Google Scholar 

  • Bensch S, Canbäck B, DeBarry JD et al (2016) The genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome Biol Evol 8:1361–1373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensch S, Coltman DW, Davis CS et al (2014) Genomic resources notes accepted 1 June 2013-31 July 2013. Mol Ecol Resour 14:218–218

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Hellgren O, Krizanauskiene A et al (2013) How can we determine the molecular clock of malaria parasites? Trends Parasitol 29:363–369

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  PubMed  Google Scholar 

  • Bensch S, Perez-Tris J, Waldenstrom J et al (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution 58:1617–1621

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D et al (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    Article  CAS  Google Scholar 

  • BernotienÄ— R, Palinauskas V, Iezhova T et al (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37

    Article  PubMed  CAS  Google Scholar 

  • Borner J, Burmester T (2017) Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics 18:100.

    Google Scholar 

  • Borner J, Pick C, Thiede J et al (2016) Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol 94:221–231

    Article  CAS  PubMed  Google Scholar 

  • Böhme U, Otto TD, Cotton JA et al (2018) Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res 28:547–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakarov N, Greiner JFW, Hauser S et al (2012) Label-free enrichment of avian Leucocytozoon using flow cytometric sorting. Parasitology 139:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Ciloglu A, Ellis VA, BernotienÄ— R et al (2019) A new one-step multiplex PCR assay for simultaneous detection and identification of avian haemosporidian parasites. Parasitol Res 118:191–201

    Article  PubMed  Google Scholar 

  • Ellis VA, Bensch S (2018) Host specificity of avian haemosporidian parasites is unrelated among sister lineages but shows phylogenetic signal across larger clades. Int J Parasitol 48:897–902

    Article  PubMed  Google Scholar 

  • Fallon SM, Bermingham E, Ricklefs RE (2003a) Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution 57:606–615

    Article  PubMed  Google Scholar 

  • Fallon SM, Ricklefs RE, Swanson BL et al (2003b) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Farias MEM, Atkinson CT, LaPointe DA et al (2012) Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii. Malar J 11:305

    Article  PubMed  PubMed Central  Google Scholar 

  • Feehery GR, Yigit E, Oyola SO et al (2013) A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 8(10):e76096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman RA, Freed LA, Cann RL (1995) A PCR test for avian malaria in Hawaiian birds. Mol Ecol 4:663–673

    Article  CAS  PubMed  Google Scholar 

  • Freed LA, Cann RL (2006) DNA quality and accuracy of avian malaria PCR diagnostics: a review. Condor 108:459–473

    Article  Google Scholar 

  • Galen SC, Borner J, Martinsen ES et al (2018a) The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. R Soc Open Sci. https://doi.org/10.1098/rsos.171780

  • Galen SC, Nunes R, Sweet PR et al (2018b) Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evol Biol 18:128.

    Google Scholar 

  • Garcia-Longoria L, Hellgren O, Bensch S (2014) Molecular identification of the chitinase genes in Plasmodium relictum. Malar J 13:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Longoria L, Hellgren O, Bensch S et al (2015) Detecting transmission areas of malaria parasites in a migratory bird species. Parasitology 142:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G et al (1987) Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Atkinson CT, Bensch S et al (2015) Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 38:842–850

    Article  Google Scholar 

  • Hellgren O, Krizanauskiene A, Hasselquist D et al (2011) Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (São Miguel, Azores). J Wildl Dis 47:849–859

    Article  PubMed  Google Scholar 

  • Hellgren O, Krizanauskiene A, ValkiÅ«nas G et al (2007a) Diversity and phylogeny of mitochondrial cytochrome b lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol 93:889–896

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Kutzer M, Bensch S et al (2013a) Identification and characterization of the merozoite surface protein 1 (msp1) gene in a host-generalist avian malaria parasite, Plasmodium relictum (lineages SGS1 and GRW4) with the use of blood transcriptome. Malar J 12:381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Pérez-Tris J et al (2007b) Detecting shifts of transmission areas in avian blood parasites: a phylogenetic approach. Mol Ecol 16:1281–1290

    Article  PubMed  Google Scholar 

  • Hellgren O, Wood MJ, Waldenstrom J et al (2013b) Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler. J Evol Biol 26:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Kita K, Tanabe K (2013) Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasitol 188:26–33

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Hansson R, Palinauskas V et al (2018) The success of sequence capture in relation to phylogenetic distance from a reference genome: a case study of avian haemosporidian parasites. Int J Parasitol 48:947–954

    Article  CAS  PubMed  Google Scholar 

  • Huang X, RapÅ¡eviĉius P, Chapa-Vargas L et al (2019) Within-lineage divergence of avian haemosporidians: a case study to reveal the origin of a widespread haemoproteus parasite. J Parasitol 105:414–422

    Article  CAS  PubMed  Google Scholar 

  • Ishtiaq F, Rao M, Huang X et al (2017) Estimating prevalence of avian haemosporidians in natural populations: a comparative study on screening protocols. Parasit Vector 10:127

    Article  CAS  Google Scholar 

  • Jarvi SI, Farias MEM, Baker H et al (2003) Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa. Conserv Genet 4:629–637

    Article  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A et al (1989) Dynamics of mitochondrial-DNA evolution in animals – amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo C-H, Wares JP, Kissinger JC (2008) The Apicomplexan whole-genome phylogeny: an analysis of incongruence among gene trees. Mol Biol Evol 25:2689–2698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauron EJ, Oakgrove KS, Tell LA et al (2014) Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malar J 13:382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leichty AR, Brisson D (2014) Selective whole genome amplification for resequencing target microbial species from complex natural samples. Genetics 198:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotta IA, ValkiÅ«nas G, Pachecoc MA et al (2019) Disentangling Leucocytozoon parasite diversity in the neotropics: descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids. Int J Parasitol Parasites Wildl 9:159–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz HL, Marra NJ, Grewe F et al (2016) Laser capture microdissection microscopy and genome sequencing of the avian malaria parasite, Plasmodium relictum. Parasitol Res 115:4503–4510

    Article  PubMed  Google Scholar 

  • Martinez C, Marzec T, Smith CD et al (2013) Identification and expression of maebl, an erythrocyte-binding gene, in Plasmodium gallinaceum. Parasitol Res 112:945–954

    Article  PubMed  Google Scholar 

  • Martinez J, Martinez-De La Puente J, Herrero J et al (2009) A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology 136:713–722

    Article  CAS  PubMed  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273

    Article  CAS  PubMed  Google Scholar 

  • Marzal A, Ricklefs RE, ValkiÅ«nas G et al (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905

    Google Scholar 

  • Moens MAJ, Valkiunas G, Paca A et al (2017) Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds (vol 85, pg 1234, 2016). J Anim Ecol 86:171–171

    Article  Google Scholar 

  • Musa S, Mackenstedt U, Woog F et al (2018) Avian malaria on Madagascar: prevalence, biodiversity and specialization of haemosporidian parasites. Int J Parasitol. https://doi.org/10.1016/j.ijpara.2018.11.001

  • Nilsson E, Taubert H, Hellgren O et al (2016) Multiple cryptic species of sympatric generalists within the avian blood parasite Haemoproteus majoris. J Evolution Biol 29:1812–1826

    Article  CAS  Google Scholar 

  • Olias P, Wegelin M, Zenker W et al (2011) Avian malaria deaths in parrots, Europe. Emerg Infect Dis 17:950–952

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen JC (2011) Collecting, processing, and storing avian blood: a review. J Field Ornithol 82:339–354

    Google Scholar 

  • Pacheco MA, Cepeda AS, BernotienÄ— R et al (2018a) Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int J Parasitol 48:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco MA, Matta NE, ValkiÅ«nas G et al (2018b) Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol 35:383–403

    Article  CAS  PubMed  Google Scholar 

  • Palinauskas V, Dolnik OV, Valkiunas G et al (2010) Laser microdissection microscopy and single cell PCR of avian hemosporidians. J Parasitol 96:420–424

    Article  CAS  PubMed  Google Scholar 

  • Palinauskas V, Krizanauskiene A, Iezhova TA et al (2013) A new method for isolation of purified genomic DNA from haemosporidian parasites inhabiting nucleated red blood cells. Exp Parasitol 133:275–280

    Article  CAS  PubMed  Google Scholar 

  • Pauli M, Chakarov N, Rupp O et al (2015) De novo assembly of the dual transcriptomes of a polymorphic raptor species and its malarial parasite. BMC Genomics 16:1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Tris J, Bensch S (2005) Diagnosing genetically diverse avian malarial infections using mixed-sequence analysis and TA-cloning. Parasitology 131:15–23

    Article  CAS  PubMed  Google Scholar 

  • Perkins SL, Schall JJ (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88:972–978

    Article  CAS  PubMed  Google Scholar 

  • Pierce MA (1981) Distribution and host-parasite check-list of haematozoa of birds in Western Europe. J Nat Hist 15:419–458

    Article  Google Scholar 

  • Reullier J, Perez-Tris J, Bensch S et al (2006) Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Mol Ecol 15:753–763

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Outlaw DC (2010) A molecular clock for malaria parasites. Science 329:226–229

    Article  CAS  PubMed  Google Scholar 

  • Rivero A, Gandon S (2018) Evolutionary ecology of avian malaria: past to present. Trends Parasitol 34:712–726

    Article  PubMed  Google Scholar 

  • Rooney AP (2004) Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans. Mol Biol Evol 21:1704–1711

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Adapa SR, Zhang M et al (2018) Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 8:12183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan F (2009) Virolution. Harper Collins, London

    Google Scholar 

  • Santiago-Alarcon D, Outlaw DC, Ricklefs RE et al (2010) Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove. Int J Parasitol 40:463–470

    Google Scholar 

  • Schmid S, Fachet K, Dinkel A et al (2017) Carrion crows (Corvus corone) of southwest Germany: important hosts for haemosporidian parasites. Malar J 16:369

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal RNM, Hull AC, Anderson NL et al (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379

    Article  PubMed  Google Scholar 

  • Stjernman M, Raberg L, Nilsson J-A (2008) Maximum host survival at intermediate parasite infection intensities. PLoS One 3(6):e2463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ValkiÅ«nas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca Raton

    Google Scholar 

  • ValkiÅ«nas G, Bensch S, Iezhova TA et al (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92:418–422

    Article  PubMed  Google Scholar 

  • ValkiÅ«nas G, Iezhova TA, Loiseau C et al (2009) Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. J Parasitol 95:1512–1515

    Article  PubMed  Google Scholar 

  • ValkiÅ«nas G, Iezhova TA, Palinauskas V et al (2015) The evidence for rapid gametocyte viability changes in the course of parasitemia in Haemoproteus parasites. Parasitol Res 114:2903–2909

    Article  PubMed  Google Scholar 

  • ValkiÅ«nas G, Ilgunas M, BukauskaitÄ— D et al (2016) Description of Haemoproteus ciconiae sp. nov. (Haemoproteidae, Haemosporida) from the white stork Ciconia ciconia, with remarks on insensitivity of established polymerase chain reaction assays to detect this infection. Parasitol Res 115:2609–2616

    Article  PubMed  Google Scholar 

  • ValkiÅ«nas G, KazlauskienÄ— R, BernotienÄ— R et al (2014) Haemoproteus infections (Haemosporida, Haemoproteidae) kill bird-biting mosquitoes. Parasitol Res 113:1011–1018

    Article  PubMed  Google Scholar 

  • ValkiÅ«nas G, Palinauskas V, KrizanauskienÄ— A et al (2013) Further observations on in vitro hybridization of hemosporidian parasites: patterns of ookinete development in Haemoproteus spp. J Parasitol 99:124–136

    Article  PubMed  Google Scholar 

  • Videvall E (2019) Genomic advances in avian malaria research. Trends Parasitol. https://doi.org/10.1016/j.pt.2018.12.005

  • Videvall E, Cornwallis CK, Ahren D et al (2017) The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression. Mol Ecol 26:2939–2958

    Article  CAS  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D et al (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Ward RD (2009) DNA barcode divergence among species and genera of birds and fishes. Mol Ecol Resour 9:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Wargo AR, Randle N, Chan BHK et al (2006) Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites. Exp Parasitol 112:13–20

    Article  CAS  PubMed  Google Scholar 

  • Weinberg J, Field JT, Ilgunas M et al (2018) De novo transcriptome assembly and preliminary analyses of two avian malaria parasites, Plasmodium delichoni and Plasmodium homocircumflexum. Genomics. https://doi.org/10.1016/j.ygeno.2018.12.004

  • Wilson R, Williamson DH (1997) Extrachromosomal DNA in the apicomplexa. Microbiol Mol Biol Rev 61:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehtindjiev P, Krizanauskiene A, Bensch S et al (2012) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome gene. J Parasitol 98:657–665

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We are indebted to Gediminas Valkiūnas, Diego Santiago-Alarcon, and Susan L. Perkins for reading earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Bensch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bensch, S., Hellgren, O. (2020). The Use of Molecular Methods in Studies of Avian Haemosporidians. In: Santiago-Alarcon, D., Marzal, A. (eds) Avian Malaria and Related Parasites in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-030-51633-8_4

Download citation

Publish with us

Policies and ethics