Skip to main content

Cophylogenetic Patterns and Speciation in Avian Haemosporidians

  • Chapter
  • First Online:
Avian Malaria and Related Parasites in the Tropics

Abstract

An extraordinary surge in the number and quality of avian haemosporidian studies in the Neotropics is unveiling the complex ecology and evolution of a successful group of parasites that have a global distribution and staggering diversity. However, despite avian haemosporidian parasites being ubiquitous, many factors still limit our understanding of their diversity. First, traditional taxonomy demands information that is relatively challenging to scale up, so several molecular lineages that are likely new species remain as “dark taxa”. Second, there exists only a limited characterization of how parasites inhabit multiple hosts from a handful of censuses. Third, an understanding of the temporal and spatial scales of speciation in this group is limited by a framework built on associations and general patterns. These factors will be discussed by explaining how species are described and delimited, how the available evidence provides insight into possible mechanisms that may elucidate the staggering diversity of haemosporidian parasites, and finally, how the available tools allow us to make preliminary inferences about the time scale of such speciation processes. Although broad in scope, this chapter highlights the need for understanding community-level processes to explain the origins and speciation in this parasite group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abella-Medrano CA, Ibáñez-Bernal S, Carbó-Ramírez P et al (2018) Blood-meal preferences and avian malaria detection in mosquitoes (Diptera: Culicidae) captured at different land use types within a neotropical montane cloud forest matrix. Parasitol Int 67:313–320

    Article  PubMed  Google Scholar 

  • Agosta SJ, Janz N, Brooks DR (2010) How specialists can be generalists: resolving the “parasite paradox” and implications for emerging infectious disease. Fortschr Zool 27:151–162

    Google Scholar 

  • Ayala FJ, Fitch WM (1992) Phylogeny of Plasmodium falciparum. Parasitol Today 8:74–75

    Article  CAS  PubMed  Google Scholar 

  • Barrow LN, Allen JM, Huang X et al (2019) Genomic sequence capture of haemosporidian parasites: methods and prospects for enhanced study of host-parasite evolution. Mol Ecol Resour 19:400–410

    Article  CAS  PubMed  Google Scholar 

  • Battistuzzi FU, Filipski A, Hedges SB et al (2010) Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Mol Biol Evol 27:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D et al (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    Google Scholar 

  • Bensch S, Pérez-Tris J, Waldenström J et al (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution 58:1617–1621

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Križanauskienė A et al (2013) How can we determine the molecular clock of malaria parasites? Trends Parasitol 29:363–369

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Canbäck B, DeBarry JD et al (2016) The genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome Biol Evol 8:1361–1373

    Article  PubMed  PubMed Central  Google Scholar 

  • Benton MJ, Donoghue PCJ, Asher RA et al (2015) Constraints on the timescale of animal evolutionary history. Palaeontol Electron 18.1.1FC:1–107

    Google Scholar 

  • Bernotienė R, Palinauskas V, Iezhova T et al (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bromham L (2019) Six impossible things before breakfast: assumptions, models, and belief in molecular dating. Trends Ecol Evol 34:474–486

    Article  PubMed  Google Scholar 

  • Brooks DR, McLennan DA (1993) Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington and London

    Google Scholar 

  • Castillo AI, Pacheco MA, Escalante AA (2017) Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: a comparative approach. Infect Genet Evol 50:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44:329–338

    Article  PubMed  Google Scholar 

  • Clark NJ, Adlard RD, Clegg SM (2015) Molecular and morphological characterization of Haemoproteus (Parahaemoproteus) ptilotis, a parasite infecting Australian honeyeaters (Meliphagidae), with remarks on prevalence and potential cryptic speciation. Parasitol Res 114:1921–1928

    Article  PubMed  Google Scholar 

  • Clark NJ, Clegg SM, Katerina S et al (2018) Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Divers Distrib 24:13–23

    Article  Google Scholar 

  • Collins RA, Cruickshank RH (2013) The seven deadly sins of DNA barcoding. Mol Ecol Resour 13:969–975

    CAS  PubMed  Google Scholar 

  • Cornejo OE, Escalante AA (2006) The origin and age of Plasmodium vivax. Trends Parasitol 22:558–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Czekanski-Moir JE, Rundell RJ (2019) The ecology of nonecological speciation and nonadaptive radiations. Trends Ecol Evol 34:400–415

    Article  PubMed  Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • dos Reis M, Donoghue PC, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17:71–80

    Article  PubMed  CAS  Google Scholar 

  • Ellis VA, Bensch S (2018) Host specificity of avian haemosporidian parasites is unrelated among sister lineages but shows phylogenetic signal across larger clades. Int J Parasitol 48:897–902

    Article  PubMed  Google Scholar 

  • Ellis VA, Sari EHR, Rubenstein DR et al (2019) The global biogeography of avian haemosporidian parasites is characterized by local diversification and intercontinental dispersal. Parasitology 146:213–219

    Article  PubMed  Google Scholar 

  • Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci U S A 91:11373–11377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalante AA, Ayala FJ (1995) Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci U S A 92:5793–5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalante AA, Freeland DE, Collins WE et al (1998) The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci U S A 95:8124–8129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallon SM, Ricklefs RE, Swanson BL et al (2003) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Fallon SM, Bermingham E, Ricklefs RE (2005) Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am Nat 165:466–480

    Article  PubMed  Google Scholar 

  • Fecchio A, Bell JA, Collins MD et al (2018) Diversification by host switching and dispersal shaped the diversity and distribution of avian malaria parasites in Amazonia. Oikos 127:1233–1242

    Article  Google Scholar 

  • Fecchio A, Bell JA, Pinheiro RBP (2019) Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds. Mol Ecol 28:2681–2693

    Article  PubMed  Google Scholar 

  • Ferreira-Junior FC, de Angeli DD, Silveira P et al (2018) A new pathogen spillover from domestic to wild animals: Plasmodium juxtanucleare infects free-living passerines in Brazil. Parasitology 145:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Galen SC, Borner J, Martinsen ES et al (2018a) The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. R Soc Open Sci 5:171780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galen SC, Nunes R, Sweet PR et al (2018b) Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evol Biol 18:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garnham PCC (1966) Malaria parasites and other haemosporidia. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Gervasi SS, Civitello DJ, Kilvitis HJ et al (2015) The context of host competence: a role for plasticity in host-parasite dynamics. Trends Parasitol 31:419–425

    Article  PubMed  PubMed Central  Google Scholar 

  • González AD, Lotta IA, García LF et al (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59

    Article  PubMed  Google Scholar 

  • Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:80–86

    Article  CAS  PubMed  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G et al (1987) Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Culleton R, Otani H et al (2008) Big bang in the evolution of extant malaria parasites. Mol Biol Evol 25:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S et al (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lara C, Espinosa de Los Monteros A, Ibarra-Cerdeña CN et al (2018) Combining morphological and molecular data to reconstruct the phylogeny of avian Haemosporida. Int J Parasitol 48:1137–1148

    Article  PubMed  Google Scholar 

  • Hewitt R (1940) Bird malaria. The American Journal of Hygiene. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450

    Article  PubMed  Google Scholar 

  • Huang X, Ellis VA, Jönsson J et al (2018) Generalist haemosporidian parasites are better adapted to a subset of host species in a multiple host community. Mol Ecol 27:4336–4346

    Article  PubMed  Google Scholar 

  • Huff CG (1938) Studies on the evolution of some disease-producing organisms. Q Rev Biol 13:196–206

    Article  Google Scholar 

  • Huyse T, Poulin R, Théron A (2005) Speciation in parasites: a population genetics approach. Trends Parasitol 21:469–475

    Article  PubMed  Google Scholar 

  • Jaramillo M, Rohrer S, Parker PG (2017) From Galapagos doves to passerines: spillover of Haemoproteus multipigmentatus. Int J Parasitol Parasites Wildl 6:155–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia T, Huang X, Valkiūnas G et al (2018) Malaria parasites and related haemosporidians cause mortality in cranes: a study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malar J 17:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson KP, Adams RJ, Page RD et al (2003) When do parasites fail to speciate in response to host speciation? Syst Biol 52:37–47

    Article  PubMed  Google Scholar 

  • Jones SM, Cumming GS, Peters JL (2018) Host community heterogeneity and the expression of host specificity in avian haemosporidia in the Western Cape, South Africa. Parasitology 145:1876–1883

    Article  PubMed  Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i. J Parasitol 96:318–324

    Article  PubMed  Google Scholar 

  • Levin II, Valkiūnas G, Iezhova TA et al (2012) Novel Haemoproteus species (Haemosporida: Haemoproteidae) from the swallow-tailed gull (Lariidae), with remarks on the host range of hippoboscid-transmitted avian hemoproteids. J Parasitol 98:847–854

    Article  PubMed  Google Scholar 

  • Lotta IA, Pacheco MA, Escalante AA et al (2016) Leucocytozoon diversity and possible vectors in the Neotropical highlands of Colombia. Protist 167:185–204

    Article  PubMed  Google Scholar 

  • Lotta IA, Valkiūnas G, Pacheco MA et al (2019) Disentangling Leucocytozoon parasite diversity in the neotropics: descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids. Int J Parasitol Parasites Wildl 9:159–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Marroquin-Flores RA, Williamson JL, Chavez AN et al (2017) Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests. PeerJ 5:e3700

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-de la Puente J, Martínez J, Rivero-de Aguilar J et al (2011) On the specificity of avian blood parasites: revealing specific and generalist relationships between haemosporidians and biting midges. Mol Ecol 20:3275–3287

    Article  PubMed  Google Scholar 

  • Martinsen ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitology 133:279–288

    Article  CAS  PubMed  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273

    Article  CAS  PubMed  Google Scholar 

  • Martinsen ES, McInerney N, Brightman H et al (2016) Hidden in plain sight: cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci Adv 2:e1501486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matta NE, Pacheco MA, Escalante AA et al (2014) Description and molecular characterization of Haemoproteus macrovacuolatus n. sp. (Haemosporida, Haemoproteidae), a morphologically unique blood parasite of black-bellied whistling duck (Dendrocygna autumnalis) from South America. Parasitol Res 113:2991–3000

    Article  PubMed  Google Scholar 

  • Moens MA, Valkiūnas G, Paca A et al (2016) Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. J Anim Ecol 85:1234–1245

    Article  PubMed  Google Scholar 

  • Mu J, Joy DA, Duan J et al (2005) Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol 22:1686–1693

    Article  CAS  PubMed  Google Scholar 

  • Muehlenbein MP, Pacheco MA, Taylor JE et al (2015) Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol 32:422–439

    Article  PubMed  Google Scholar 

  • Nishimoto Y, Arisue N, Kawai S et al (2008) Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol 47:45–53

    Article  CAS  PubMed  Google Scholar 

  • Nosil P (2012) Ecological Speciation. Oxford Univ. Press, Oxford

    Book  Google Scholar 

  • Outlaw DC, Ricklefs RE (2010) Comparative gene evolution in haemosporidian (apicomplexa) parasites of birds and mammals. Mol Biol Evol 27:537–542

    Article  CAS  PubMed  Google Scholar 

  • Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141:1223–1232

    Article  PubMed  Google Scholar 

  • Pacheco MA, Battistuzzi FU, Junge RE et al (2011) Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol 11:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco MA, Matta NE, Valkiunas G et al (2018a) Mode and rate of evolution of Haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol 35:383–403

    Article  CAS  PubMed  Google Scholar 

  • Pacheco MA, Cepeda AS, Bernotienė R et al (2018b) Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int J Parasitol 48:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page RD (2016) DNA barcoding and taxonomy: dark taxa and dark texts. Philos Trans R Soc Lond B 371:20150334

    Google Scholar 

  • Palinauskas V, Žiegytė R, Ilgūnas M et al (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62

    Article  PubMed  Google Scholar 

  • Pérez-Tris J, Hellgren O, Križanauskienė A et al (2007) Within-host speciation of malaria parasites. PLoS One 2:e235

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins SL (2014) Malaria's many mates: past, present, and future of the systematics of the order Haemosporida. J Parasitol 100:11–25

    Article  PubMed  Google Scholar 

  • Poinar G Jr (2005) Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from Tertiary Dominican amber. Syst Parasitol 61:47–52

    Article  PubMed  Google Scholar 

  • Poulin R (2007a) Are there general laws in parasite ecology? Parasitology 134:763–776

    Article  CAS  PubMed  Google Scholar 

  • Poulin R (2007b) Evolutionary ecology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Ramiro RS, Reece SE, Obbard DJ (2012) Molecular evolution and phylogenetics of rodent malaria parasites. BMC Evol Biol 12:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice BL, Acosta MM, Pacheco MA et al (2014) The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol 78:172–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269:885–892

    Google Scholar 

  • Ricklefs RE, Outlaw DC (2010) A molecular clock for malaria parasites. Science 329:226–229

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Outlaw DC, Svensson-Coelho M et al (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci U S A 111:14816–14821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Alarcon D, Merkel J (2018) New host-parasite relationships by host-switching. In: Parker PG (ed) Disease ecology, social and ecological interactions in the Galapagos Islands. Springer International Publishing, Switzerland

    Google Scholar 

  • Santiago-Alarcon D, Outlaw DC, Ricklefs RE et al (2010) Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove. Int J Parasitol 40:463–470

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Alarcon D, Bloch R, Rolshausen G et al (2011) Prevalence, diversity, and interaction patterns of avian haemosporidians in a four-year study of blackcaps in a migratory divide. Parasitology 138:824–835

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Alarcon D, Rodríguez-Ferraro A, Parker PG et al (2014) Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds. Parasit Vector 7:286

    Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  CAS  PubMed  Google Scholar 

  • Sehgal RN, Hull AC, Anderson NL et al (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379

    Article  PubMed  Google Scholar 

  • Seyfullah LJ, Beimforde C, Dal Corso J et al (2018) Production and preservation of resins - past and present. Biol Rev Camb Philos Soc 93:1684–1714

    Article  PubMed  Google Scholar 

  • Silva JC, Egan A, Arze C et al (2015) A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts. Mol Biol Evol 32:1354–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford GD, Feist SW, Stone DM et al (2014) Policy, phylogeny, and the parasite. Trends Parasitol 30:274–281

    Article  PubMed  Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47:507–532

    Article  Google Scholar 

  • Sutherland CJ, Tanomsing N, Nolder D et al (2010) Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis 201:1544–1550

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Battistuzzi FU, Billing-Ross P et al (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci U S A 109:19333–19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troudet J, Vignes-Lebbe R, Grandcolas P et al (2018) The increasing disconnection of primary biodiversity data from specimens: how does it happen and how to handle it? Syst Biol 67:1110–1119

    Article  PubMed  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  • Valkiūnas G, Iezhova TA (2018) Keys to the avian malaria parasites. Malar J 17:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkiūnas G, Ilgūnas M, Bukauskaitė D et al (2018) Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malar J 17:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valkiūnas G, Ilgūnas M, Bukauskaitė D et al (2019) Molecular characterization of six widespread avian haemoproteids, with description of three new Haemoproteus species. Acta Trop 197:105051

    Google Scholar 

  • van Hoesel W, Marzal A, Magallanes S et al (2019) Management of ecosystems alters vector dynamics and haemosporidian infections. Sci Rep 9:8779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D et al (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662

    Article  PubMed  Google Scholar 

  • Warnock RC, Yang Z, Donoghue PC (2012) Exploring uncertainty in the calibration of the molecular clock. Biol Lett 8:156–159

    Article  PubMed  Google Scholar 

  • Waters AP, Higgins DG, McCutchan TF (1991) Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc Natl Acad Sci U S A 88:3140–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells K, Clark NJ (2019) Host specificity in variable environments. Trends Parasitol 35:452–465

    Article  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Zachos FE (2016) Species concepts in biology: historical development, theoretical foundations and practical relevance. Springer International Publishing, Switzerland

    Book  Google Scholar 

Download references

Acknowledgments

We thank Diana C. Outlaw for her valuable comments as reviewer. We also thank Mónica M. Acosta and Benjamin L. Rice for their comments and suggestions that enhanced the clarity of our chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Andreína Pacheco or Ananias A. Escalante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pacheco, M.A., Escalante, A.A. (2020). Cophylogenetic Patterns and Speciation in Avian Haemosporidians. In: Santiago-Alarcon, D., Marzal, A. (eds) Avian Malaria and Related Parasites in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-030-51633-8_12

Download citation

Publish with us

Policies and ethics