Skip to main content

Dynamic Resource Management in Real-Time Wireless Networks

  • Chapter
  • First Online:
Wireless Networks and Industrial IoT

Abstract

This chapter gives an overview on various dynamic resource management frameworks for handling network dynamics in real-time wireless networks (RTWNs). The designs of these frameworks were driven by the specific objectives of achieving real-time and reliable data delivery in RTWNs with diversified constraints on network resource, device computation capacity, etc. This chapter presents three representative dynamic resource management solutions: HD-PaS, RD-PaS, and FD-PaS as hybrid, reliable, and distributed dynamic packet scheduling frameworks, respectively. An implementation of FD-PaS on a real-time wireless network testbed is given at the end of this chapter to show its applicability in real-world RTWNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, RTWNs usually apply multichannel communication. For simplicity, in this chapter, we illustrate the resource management frameworks under a single channel assumption.

  2. 2.

    A system does not go to the rhythmic mode immediately after a disturbance is detected. It only enters the rhythmic mode (and Ï„ 0 enters the rhythmic state) after each device receives the broadcast packet at the start point t sp.

  3. 3.

    Upon detection of the external disturbance(s), specifications of the rhythmic task(s) are received from the controller node.

  4. 4.

    \({t_{ep}^u}\) is a user-specified parameter to bound the maximum allowed latency for handling the current rhythmic event.

  5. 5.

    No acknowledgment is provided for broadcast and multicast packets.

References

  1. Da Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform

    Google Scholar 

  2. Tramarin F, Mok AK, Han S (2019) Real-time and reliable industrial control over wireless lans: algorithms, protocols, and future directions. Proc IEEE

    Google Scholar 

  3. Åkerberg J, Gidlund M, Björkman M (2011) Future research challenges in wireless sensor and actuator networks targeting industrial automation. In: 9th IEEE International Conference on Industrial Informatics

    Google Scholar 

  4. Sisinni E, Saifullah A, Han S, Jennehag U, Gidlund M (2018) Industrial internet of things: challenges, opportunities, and directions. IEEE Trans Ind Inform

    Google Scholar 

  5. Lu C, Saifullah A, Li B, Sha M, Gonzalez H, Gunatilaka D, Wu C, Nie L, Chen Y (2015) Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proc IEEE

    Google Scholar 

  6. Willig A (2008) Recent and emerging topics in wireless industrial communications: a selection. IEEE Trans Ind Inform

    Google Scholar 

  7. Willig A, Matheus K, Wolisz A (2005) Wireless technology in industrial networks. Proc IEEE

    Google Scholar 

  8. Hei X, Du X, Lin S, Lee I (2013) Pipac: patient infusion pattern based access control scheme for wireless insulin pump system. In: INFOCOM

    Google Scholar 

  9. Gatsis K, Ribeiro A, Pappas GJ (2014) Optimal power management in wireless control systems. IEEE Trans Autom Control

    Google Scholar 

  10. Karbhari VM, Ansari F (2009) Structural health monitoring of civil infrastructure systems. Elsevier

    Google Scholar 

  11. Zhang T, Gong T, Gu C, Ji H, Han S, Deng Q, Hu XS (2017) Distributed dynamic packet scheduling for handling disturbances in real-time wireless networks. In: RTAS

    Google Scholar 

  12. Zhang T, Gong T, Han S, Deng Q, Hu XS (2018) Distributed dynamic packet scheduling framework for handling disturbances in real-time wireless networks. IEEE Trans Mobile Comput

    Google Scholar 

  13. Gong T, Zhang T, Hu XS, Deng Q, Lemmon M, Han S (2019) Reliable dynamic packet scheduling over lossy real-time wireless networks. In: ECRTS

    Google Scholar 

  14. Zhang T, Gong T, Yun Z, Han S, Deng Q, Hu XS (2018) Fd-pas: a fully distributed packet scheduling framework for handling disturbances in real-time wireless networks. In: RTAS

    Google Scholar 

  15. Zhang T, Gong T, Han S, Deng Q, Hu XS (2019) Fully distributed packet scheduling framework for handling disturbances in lossy real-time wireless networks. IEEE Trans Mobile Comput

    Google Scholar 

  16. Han S, Zhu X, Mok AK, Chen D, Nixon M (2011) Reliable and real-time communication in industrial wireless mesh networks. In: RTAS

    Google Scholar 

  17. Leng Q, Wei Y-H, Han S, Mok AK, Zhang W, Tomizuka M (2014) Improving control performance by minimizing jitter in RT-WiFi networks. In: RTSS

    Google Scholar 

  18. Saifulah A, Lu C, Xu Y, Chen Y (2010) Real-time scheduling for WirelessHART networks. In: RTSS

    Google Scholar 

  19. Crenshaw TL, Hoke S, Tirumala A, Caccamo M (2007) Robust implicit EDF: a wireless mac protocol for collaborative real-time systems. ACM Trans Embed Comput Syst

    Google Scholar 

  20. Shen W, Zhang T, Gidlund M, Dobslaw F (2013) SAS-TDMA: a source aware scheduling algorithm for real-time communication in industrial wireless sensor networks. Wirel Netw

    Google Scholar 

  21. Ferrari F, Zimmerling M, Mottola L, Thiele L (2012) Low-power wireless bus. In: SenSys

    Google Scholar 

  22. Sha M, Dor R, Hackmann G, Lu C, Kim T-S, Park T, Self-adapting mac layer for wireless sensor networks. In: RTSS (2013)

    Google Scholar 

  23. Chipara O, Wu C, Lu C, Griswold WG (2011) Interference-aware real-time flow scheduling for wireless sensor networks. In: ECRTS

    Google Scholar 

  24. Zimmerling M, Mottola L, Kumar P, Ferrari F, Thiele L (2017) Adaptive real-time communication for wireless cyber-physical systems. ACM Trans Cyber-Phys Syst

    Google Scholar 

  25. Li B, Nie L, Wu C, Gonzalez H, Lu C, Incorporating emergency alarms in reliable wireless process control. In: ICCPS (2015)

    Google Scholar 

  26. Palattella MR, Accettura N, Grieco LA, Boggia G, Dohler M, Engel T (2013) On optimal scheduling in duty-cycled industrial iot applications using ieee802. 15.4 e tsch. IEEE Sensors J

    Google Scholar 

  27. Soua R, Minet P, Livolant E (2012) Modesa: an optimized multichannel slot assignment for raw data convergecast in wireless sensor networks. In: IPCCC

    Google Scholar 

  28. Soua R, Livolant E, Minet P (2013) Musika: a multichannel multi-sink data gathering algorithm in wireless sensor networks. In: IWCMC

    Google Scholar 

  29. Tinka A, Watteyne T, Pister K (2010) A decentralized scheduling algorithm for time synchronized channel hopping. In: ADHOCNETS

    Google Scholar 

  30. Morell A, Vilajosana X, Vicario JL, Watteyne T (2013) Label switching over ieee802. 15.4 e networks. Trans Emerging Telecommun Technol

    Google Scholar 

  31. Soua R, Minet P, Livolant E (2016) Wave: a distributed scheduling algorithm for convergecast in ieee 802.15. 4e tsch networks. Trans Emerging Telecommun Technol

    Google Scholar 

  32. Duquennoy S, Al Nahas B, Landsiedel O, Watteyne T (2015) Orchestra: robust mesh networks through autonomously scheduled TSCH. In: SenSys

    Google Scholar 

  33. Thubert P, Watteyne T, Struik R, Richardson M (2015) An architecture for ipv6 over the TSCH mode of ieee 802.15. 4. Working Draft, IETF Secretariat, Internet-Draft draft-ietf-6tisch-architecture-08

    Google Scholar 

  34. Kim J, Lakshmanan K, Rajkumar R (2012) Rhythmic tasks: a new task model with continually varying periods for cyber-physical systems. In: ICCPS

    Google Scholar 

  35. Hong S, Hu XS, Gong T, and Han S (2015) On-line data link layer scheduling in wireless networked control systems. In: ECRTS

    Google Scholar 

  36. De Guglielmo D, Anastasi G, Seghetti A (2014) From IEEE 802.15. 4 to IEEE 802.15. 4e: A step towards the internet of things. In: Advances onto the Internet of Things

    Google Scholar 

  37. Brummet R, Gunatilaka D, Vyas D, Chipara O, Lu C (2018) A flexible retransmission policy for industrial wireless sensor actuator networks. In: ICII

    Google Scholar 

  38. Song J, Han S, Mok A, Chen D, Lucas M, Nixon M, Pratt W (2008) Wirelesshart: applying wireless technology in real-time industrial process control. In: RTAS

    Google Scholar 

  39. Dujovne D, Watteyne T, Vilajosana X, Thubert P, 6tisch: deterministic ip-enabled industrial internet (of things). IEEE Commun Mag (2014)

    Google Scholar 

  40. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM (JACM)

    Google Scholar 

  41. Lawler E, New and improved algorithms for scheduling a single machine to minimize the weighted number of late jobs. Preprint, Computer Science Division, University of California

    Google Scholar 

  42. Moore JM (1968) An n job, one machine sequencing algorithm for minimizing the number of late jobs. Manag Sci

    Google Scholar 

  43. Baptiste P (1999) An \(\mathcal {O}(n^4)\) algorithm for preemptive scheduling of a single machine to minimize the number of late jobs. Oper Res Lett

    Google Scholar 

  44. Watteyne T, Vilajosana X, Kerkez B, Chraim F, Weekly K, Wang Q, Glaser S, Pister K (2012) OpenWSN: a standards-based low-power wireless development environment. Trans Emerging Telecommun Technol

    Google Scholar 

  45. Watteyne T, Palattella M, Grieco L (2015) Using IEEE 802.15.4e time-slotted channel hopping (TSCH) in the internet of things (IoT): Problem statement, RFC 7554, May 2015

    Google Scholar 

  46. Stanislowski D, Vilajosana X, Wang Q, Watteyne T, Pister KS (2014) Adaptive synchronization in ieee802. 15.4e networks. IEEE Trans Ind Inform

    Google Scholar 

Download references

Acknowledgements

The work reported herein is supported by the National Science Foundation under NSF Award IIP-1919229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T., Gong, T., Hu, X.S., Deng, Q., Han, S. (2021). Dynamic Resource Management in Real-Time Wireless Networks. In: Mahmood, N.H., Marchenko, N., Gidlund, M., Popovski, P. (eds) Wireless Networks and Industrial IoT. Springer, Cham. https://doi.org/10.1007/978-3-030-51473-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51473-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51472-3

  • Online ISBN: 978-3-030-51473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics