Skip to main content

The Stress as Inducer of Heritable Changes in Micropropagated Banana – The Hypothesis of Cytokinin Accumulation

  • Chapter
  • First Online:
Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery

Abstract

Vegetative plant propagation may lead to heritable phenotypic changes, a phenomenon known as somaclonal variation. The underlying molecular causes relay in the breakdown of a preexisting chimerism, or in the induction by stress of rather controlled chromatin remodeling at epigenomic and genomic levels, as well as in less extent mutations, generally considered to occur randomly. The controlled epigenetic alterations may facilitate subsequent concrete genome reorganizations and, both together, the occurrence of other DNA sequence mutations in genomic regions constitutively more labile or that become more exposed. Thus, chromatin remodeling, as a plastic response of plant to manage stress, is a controlled effect that may facilitate specific genome changes probably not so random. This should result in more frequent variant phenotypes (somaclones), such as the dwarf types of banana and plantain generated after several cycles of micropropagation. Several studies pointed out that the banana (epi)genome might became unstable during increased multiplication cycles, resulting in higher somaclone indexes. The most applied plant growth regulator for banana micropropagation is the cytokinin 6-benzylaminopurine, which promotes the development of new shoots, another possible defense response of plant to the specific stress generated by the whole set of artificial culture conditions. The contents of such molecule and its metabolism in the plant along subcultures affect both organogenesis and somaclonal variation by inducing chromatin changes that affect developmental processes and phenotype, respectively. In the present chapter, we express our opinion about these facts on the bases of reviewed literature and our own experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aremu, A. O., Bairu, M. W., Doležal, K., Finnie, J. F., & van Staden, J. (2012a). Topolins: A panacea to plant tissue culture challenges? Plant Cell, Tissue and Organ Culture, 108, 1–16.

    CAS  Google Scholar 

  • Aremu, A. O., Bairu, M. W., Szüčová, L., Doležal, K., Finnie, J. F., & van Staden, J. (2012b). Shoot and root proliferation in “Williams” banana: Are the topolins better cytokinins? Plant Cell, Tissue and Organ Culture, 111, 209–218.

    Google Scholar 

  • Aremu, A. O., Bairu, M. W., Szüčová, L., Doležal, K., Finnie, J. F., & van Staden, J. (2013). Genetic fidelity in tissue-cultured “Williams” bananas – the effect of high concentration of topolins and benzyladenine. Scientia Horticulturae, 161, 324–327.

    CAS  Google Scholar 

  • Aremu, A. O., Doležal, K., & van Staden, J. (2017). New cytokinin-like compounds as a tool to improve rooting and establishment of micropropagated plantlets. Acta Horticulturae, 1155, 497–504.

    Google Scholar 

  • Bairu, M. W., Fennell, C., & van Staden, J. (2006). The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. “Zelig”). Scientia Horticulturae, 108, 347–351.

    CAS  Google Scholar 

  • Bairu, M. W., Stirk, H. A., Doležal, K., & van Staden, J. (2008). The role of topolins in micropropagation and somaclonal variation of banana cultivars “Williams” and “Grand Naine” (Musa spp. AAA). Plant Cell, Tissue and Organ Culture, 95, 373–379.

    CAS  Google Scholar 

  • Bairu, M. W., Novák, O., Doležal, K., & van Staden, J. (2011). Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regulation, 63, 105–114.

    CAS  Google Scholar 

  • Bayliss, M. W. (1980). Chromosomal variation in plant tissues in culture. International Review of Cytology. Supplement, 11, 113–144.

    Google Scholar 

  • Bhalang, D., Prabhuling, G., Hipparagi, K., Raghavendra, S., Prakash, D. P., & Babu, A. G. (2018). Analysis of the genetic stability of banana tissue culture propagated plantlets cv. Ney Poovan (AB) using morphological and molecular markers. International Journal of Current Microbiology and Applied Sciences, 7(1), 1007–1018.

    Google Scholar 

  • Blagoeva, E., Dobrev, P. I., Malbeck, J., Motyka, V., Strnad, M., Hanus, J., & Vanková, R. (2004). Cytokinin N-glucosylation inhibitors suppress deactivation of exogenous cytokinins in radish, but their effect on active endogenous cytokinins is counteracted by other regulatory mechanisms. Physiologia Plantarum, 121(2), 215–222.

    CAS  PubMed  Google Scholar 

  • Blakesley, D. (1991). Uptake and metabolism of 6-benzyladenine in shoot cultures of Musa and Rhododendron. Plant Cell, Tissue and Organ Culture, 25, 69–74.

    CAS  Google Scholar 

  • Blakesley, D., & Constantine, D. (1992). Uptake and metabolism of 6-benzyladenine in shoot cultures of a range of species. Plant Cell, Tissue and Organ Culture, 28, 183–186.

    CAS  Google Scholar 

  • Brzobohatý, B., Moore, I., & Palme, K. (1994). Cytokinin metabolism: Implications for regulation of plant growth and development. Plant Molecular Biology, 26, 1483–1497.

    PubMed  Google Scholar 

  • Carimi, F., Terzi, M., De Michele, R., Zottini, M., & Lo Schiavo, F. (2004). High levels of the cytokinin BAP induce PCD by accelerating senescence. Plant Science, 166, 963–969.

    CAS  Google Scholar 

  • Doležal, K., Popa, I., Haserova, E., Spichal, L., & Strnad, M. (2007). Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorganic & Medicinal Chemistry, 15, 3737–3747.

    Google Scholar 

  • Falk, A., & Rask, L. (1995). Expression of a zeatin-O-glucoside-degrading [beta]-glucosidase in Brassica napus. Plant Physiology, 108(4), 1369–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X., Shim, W. B., Göbel, C., Kunze, S., Feussner, I., Meeley, R., Balint-Kurti, P., & Kolomiets, M. (2007). Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with the mycotoxin fumonisin. Molecular Plant-Microbe Interactions, 20, 922–933.

    CAS  PubMed  Google Scholar 

  • Gaut, B. S., & Ross-Ibarra, J. (2008). Selection on major components of angiosperm genomes. Science, 320, 484–486.

    CAS  PubMed  Google Scholar 

  • George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant growth regulators II: Cytokinins, their analogues and antagonists. In E. F. George, M. A. Hall, & G. J. D. Klerk (Eds.), Plant propagation by tissue culture (pp. 205–226). Dordrecht: Springer.

    Google Scholar 

  • Giménez, C., de García, E., de Enrech, N. X., et al. (2001). Somaclonal variation in banana: Cytogenetic and molecular characterization of the somaclonal variant cien BTA-03. In Vitro Cellular & Developmental Biology. Plant, 37, 217–222. https://doi.org/10.1007/s11627-001-0038-6.

    Article  Google Scholar 

  • Israeli, A., Bem-Bassat, D., & Reuveni, O. (1996). Selection of stable banana clones which do not produce dwarf somaclonal variants during in vitro culture. Scientia Horticulturae, 67(197–205), 1996.

    Google Scholar 

  • Jafari, N., Othman, R. Y., & Khalid, N. (2011). Effect of benzylaminopurine (BAP) pulsing on in vitro shoot multiplication of Musa acuminata (banana) cv. Berangan. African Journal of Biotechnology, 10, 2446–2450.

    CAS  Google Scholar 

  • Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43, 179–188. https://doi.org/10.1023/A:1006423110134.

    Article  CAS  PubMed  Google Scholar 

  • Kiba, T., Takei, K., Kojima, M., & Sakakibara, H. (2013). Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Developmental Cell, 27(4), 452–461.

    CAS  PubMed  Google Scholar 

  • Kiran, N. S., Benková, E., Reková, A., Dubová, J., Malbeck, J., Palme, K., & Brzobohatý, B. (2012). Retargeting a maize β-glucosidase to the vacuole – evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. Phytochemistry, 79, 67–77.

    CAS  PubMed  Google Scholar 

  • Kristoffersen, P., Brzobohaty, B., Höhfeld, I., Bako, L., Melkonian, M., & Palme, K. (2000). Developmental regulation of the maize Zm-p60.1 gene encoding a β-glucosidase located to plastids. Planta, 210, 407–415.

    CAS  PubMed  Google Scholar 

  • Kunikowska, A., Byczkowska, A., & Kaźmierczak, A. (2013). Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. Protoplasma, 250(4), 851–861.

    CAS  PubMed  Google Scholar 

  • Li, C.-H., et al. (2008). Down-regulation of S-adenosyl-l-homocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions. Planta, 228, 125–136.

    CAS  PubMed  Google Scholar 

  • Li, J., Nie, X., Tan, J. L. H., & Berger, F. (2013). Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 110, 15479–15484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Schiavo, F., Pitto, L., Giuliano, G., Torti, G., Nuti-Ronchi, V., Marazziti, D., et al. (1989). DNA methylation of embryogenic carrot cell cultures and its variations as caused by maturation, differentiation, hormones and hypomethylation drugs. Theoretical and Applied Genetics, 77, 325–331.

    CAS  Google Scholar 

  • Lomin, S. N., Krivosheev, D. M., Steklov, M. Y., Arkhipov, D. V., Osolodkin, D. I., Schmülling, T., & Romanov, G. A. (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. Journal of Experimental Botany, 66(7), 1851–1863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, K., Pachathundikandi, S., Zhang, C., Slater, A., & Madassery, J. (2006). RAPD analysis of a variant of banana (Musa sp.) cv. grande naine and its propagation via shoot tip culture. In Vitro Cellular & Developmental Biology. Plant, 42, 188–192.

    CAS  Google Scholar 

  • Masuta, C., Kuwata, S., & Noma, M. (1995). Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Proceedings of the National Academy of Sciences of the U S A, 92, 6117–6121.

    CAS  Google Scholar 

  • McGaw, B. A., & Hobgan, R. (1985). Cytokinin metabolism and the control of cytokinin activity. Biologia Plantarum, 27(2–3), 180–187.

    CAS  Google Scholar 

  • Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725.

    CAS  PubMed  Google Scholar 

  • Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., & Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences, 103(44), 16598–16603.

    CAS  Google Scholar 

  • Muhammad, A. J., & Othman, F. Y. (2005). Characterization of Fusarium wilt-resistant and Fusarium wilt-susceptible somaclones of banana cultivar Rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Molecular Biology Reporter, 23(3), 241–249.

    CAS  Google Scholar 

  • Noceda, C., Vargas, A., Roels, S., Cejas, I., Santamaría, E., Escalona, M., et al. (2012). Field performance and (epi) genetic profile of plantain (Musa AAB) clone “CEMSA ¾” plants micropropagated by temporary immersion systems. Scientia Horticulturae, 146, 65–75.

    CAS  Google Scholar 

  • Nwauzoma, A. B., & Jaja, E. T. (2013). A review of somaclonal variation in plantain (Musa spp): Mechanisms and applications. Journal of Applied Biosciences, 67, 5252–5260.

    Google Scholar 

  • Oh, T. J., Cullis, M. A., Kunert, K., Engelborghs, I., Swennen, R., & Cullis, C. A. (2007). Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiologia Plantarum, 129(4), 766–774.

    CAS  Google Scholar 

  • Podlešáková, K., Zalabák, D., Čudejková, M., Plíhal, O., Szüčová, L., et al. (2012). Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS One, 7(6), e39293.

    PubMed  PubMed Central  Google Scholar 

  • Ray, T., Dutta, I., Saha, P., Das, S., & Roy, S. C. (2006). Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell, Tissue and Organ Culture, 85(1), 11–21.

    CAS  Google Scholar 

  • Reuveni, O., & Israeli, Y. (1990). Measures to reduce somaclonal variation in vitro propagated bananas. Acta Horticulturae, 275, 307–313.

    Google Scholar 

  • Rodrigues, P. H. V., Tulmann Neto, A., Cassieri Neto, P., & Mendes, B. M. J. (1998). Influence of the number of subcultures on the somaclonal variation of banana plantlets cv. Nanicao in Vale do Ribeira, Sao Paulo. Revista Brasileira de Fruticultura (Brazil). Acta Horticulturae, 490(490), 469–474.

    Google Scholar 

  • Roels, S., Escalona, M., Cejas, I., Noceda, C., Rodriguez, R., Canal, M. J., et al. (2005). Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue and Organ Culture, 82(1), 57–66.

    CAS  Google Scholar 

  • Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431–449.

    CAS  PubMed  Google Scholar 

  • Sheidai, M., Aminpoor, H., Noormohammadi, Z., & Farahani, F. (2008). RAPD analysis of somaclonal variation in banana (Musa acuminata L.) cultivar Valery. Acta Biologica Szegediensis, 52(2), 307–311.

    Google Scholar 

  • Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods, 8(1), 17.

    PubMed  PubMed Central  Google Scholar 

  • Szüčová, L., Spíchal, L., Doležal, K., Zatloukal, M., Greplová, J., Galuszka, P., Kryštofa, V., Vollera, I., Popaa, I., Massino, F. J., Jørgensen, J., & Strnad, M. (2009). Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic & Medicinal Chemistry, 17, 1938–1947.

    Google Scholar 

  • Takei, K., Ueda, N., Aoki, K., Kuromori, T., Hirayama, T., Shinozaki, K., Yamaya, T., & Sakakibara, H. (2004). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant & Cell Physiology, 45(8), 1053–1062.

    CAS  Google Scholar 

  • Tanaka, H., et al. (1997). Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-l-homocysteine hydrolase gene. Plant Molecular Biology, 35, 981–986.

    CAS  PubMed  Google Scholar 

  • Van Staden, J., & Crouch, N. R. (1996). Benzyladenine and derivatives – their significance and interconversion in plants. Plant Growth Regulation, 19, 153–175.

    Google Scholar 

  • Vázquez, A. M., & Linacero, R. (2010). Stress and somaclonal variation. In E.-C. Pua & M. Davey (Eds.), Plant developmental biology – biotechnological perspectives (Vol. 2, pp. 45–64). New York: Springer.

    Google Scholar 

  • Venkatachalam, L., Sreedhar, R. V., & Bhagyalakshmi, N. (2007). Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regulation, 51, 193–205.

    CAS  Google Scholar 

  • Wang, Q. M., & Wang, L. (2012). An evolutionary view of plant tissue culture: Somaclonal variation and selection. Plant Cell Reports, 31(9), 1535–1547.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Zhang, X., Cui, Y., Li, L., Wang, D., Mei, Y., & Wang, N. N. (2019). AHK3-mediated cytokinin signaling is required for the delayed leaf senescence induced by SSPP. International Journal of Molecular Sciences, 20, 2043.

    CAS  PubMed Central  Google Scholar 

  • Werbrouck, S. P., van der Jeugt, B., Dewitte, W., Prinsen, E., Van Onckelen, H. A., & Debergh, P. C. (1995). The metabolism of benzyladenine in S. floribundum Schott “Petite” in relation to acclimatization problems. Plant Cell Reports, 14, 662–665.

    CAS  PubMed  Google Scholar 

  • Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T., & Mizuno, T. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant & Cell Physiology, 42(9), 1017–1023.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Noceda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noceda, C., Steinmacher, D.A. (2020). The Stress as Inducer of Heritable Changes in Micropropagated Banana – The Hypothesis of Cytokinin Accumulation. In: Chong, P., Newman, D., Steinmacher, D. (eds) Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer, Cham. https://doi.org/10.1007/978-3-030-51358-0_4

Download citation

Publish with us

Policies and ethics