Skip to main content

Mechanical, Hydraulic, and Chemical Behavior of Steel Slag-Amended Loessical Silt–Bentonite Liners

  • Conference paper
  • First Online:
Sustainable Environmental Geotechnics

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 89))

Abstract

Liners are engineered layers of low hydraulic conductivity designed to isolate solid, semisolid, or liquid wastes from the environment. Most common materials for liners construction are natural soils amended with bentonite to achieve the low hydraulic conductivity specified by current regulations. This work evaluates the potential reuse of steel slag to improve the performance of landfill liners. We evaluate the effect of adding slag to soil on its mechanical and reactive properties when compacted. Used soil is a loessical silt from the center of Argentina which is frequently used for the construction of bottom liners. The effect of slag content and curing time on the unconfined compression strength of slag–silt mixtures is assessed. Obtained values are incorporated in contaminant transport models to evaluate the transport of metal ions present in leachate through landfill barriers. Results show that the retention of metal ions within a compacted barrier amended with steel slag is mainly associated with the increase of the pH of the barrier material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Oss, Hendrik G (2003) Slag-iron and steel. US geological survey minerals yearbook 1

    Google Scholar 

  2. Akinmusuru JO (1991) Potential beneficial uses of steel slag wastes for civil engineering purposes. Resour Conserv Recycl 5(1):73–80

    Article  Google Scholar 

  3. Maslehuddin M, Sharif A, Shameem M, Ibrahim M, Barry MS (2003) Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 17(2):105–115

    Article  Google Scholar 

  4. Anastasiou E, Georgiadis FK, Stefanidou M (2014) Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr Build Mater 50:154–161

    Article  Google Scholar 

  5. Ding, Y-C, Cheng TW, Liu PC, Lee WH (2017) Study on the treatment of BOF slag to replace fine aggregate in concrete. Constr Build Mater 46:644–651

    Google Scholar 

  6. Xue Y, Wu S, Hou H, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater 138(2):261–268

    Article  Google Scholar 

  7. Ferreira VJ, Sáez De Guinoa Vilpaplana A, García Armingol T, Aranda Uson A, Lausín González C, López Sabirón AM, Ferreira G (2016) Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment. J Clean Prod 130: 175–186

    Google Scholar 

  8. Chen, J-S, Wei S-H (2016) Engineering properties and performance of asphalt mixtures incorporating steel slag. Constr Build Mater 128:148–153

    Google Scholar 

  9. Kambole C, Paige-Green P, Kupolati WK, Ndambuki JM, Adeboje AO (2017) Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in- southern Africa. Constr Build Mater 148:618–631

    Article  Google Scholar 

  10. Reddy SA, Pradhan RK, Chandra S (2006) Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. Int. J. Miner Process 79:98–105

    Article  Google Scholar 

  11. Carvalho SZ, Vernilli F, Almeida B, Demarco M, Silva SN (2017) The recycling effect of BOF slag in the Portland cement properties. Resour Conserv Recycl 127:216–220

    Article  Google Scholar 

  12. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for portland cement clinker production. J Hazard Mater 152:805–811

    Article  Google Scholar 

  13. Ozturk BZ, Gultekin EE (2015) Preparation of ceramic wall tiling derived from blast furnace slag. Ceram Int 41:12020–12026

    Article  Google Scholar 

  14. Ding L, Ning W, Wang Q, Shi D, Luo L (2015) Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass. Mater Lett 141:327–329

    Article  Google Scholar 

  15. Manso JM, Ortega-López V, Polanco JA, Setién J (2013) The use of ladle furnace slag in soil stabilization. Constr Build Mater 40:126–134

    Article  Google Scholar 

  16. Sharma KA, Sivapullaiah PV (2016) Ground granulated blast furnace slag amended fly ash as an expensive soil stabilizer. Soils Found 56(2):205–212

    Article  Google Scholar 

  17. Yildrim IZ, Prezzi M (2015) Geotechnical properties of fresh and aged basic oxygen furnace steel slag. J Mater Civ Eng 27(12)

    Google Scholar 

  18. Shalabi FI, Asi IM, Qasraei HY (2017) Effect of by-product steel slag on the engineering properties of clays soils. J King Saud Univ–Eng Sci 29:394–399

    Google Scholar 

  19. Yi Y, Gu L, Liu S, Jin F (2016) Magnesia reactivity on activating efficacy for ground granulated blast furnace slag for soft clay stabilization. Appl Clay Sci 126:57–62

    Article  Google Scholar 

  20. Park SJ, Kang K, Lee CG, Choi JW (2018) Remediation of metal contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment. Environ Technol 1–13

    Google Scholar 

  21. Abichou T, Benson CH, Edil TB (2002) Foundry green sands as hydraulic barriers: field study. J Geotech Geoenviron Eng 128(3):206–215

    Article  Google Scholar 

  22. Adami A, Rinaldi VA (2017) The influence of amorphous silica on the aging of remolded loessial soil. Soils Found 57:315–326

    Article  Google Scholar 

  23. Muhmood L, Vitta S, Venkateswaran D (2009) Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem Concr Res 39:102–109

    Article  Google Scholar 

  24. Mozejko C, Francisca FM Caracterización mecánica de los suelos loéssicos de Córdoba estabilizados con escorias siderúrgicas. In: 24th “Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica” Salta, Argentina (2018)

    Google Scholar 

  25. Luxan MP, Madruga F, Saavedra F (1989) Cem Concr Res 19:63–68

    Article  Google Scholar 

  26. Fetter CW Contaminant hydrogeology, vol 458, 2a edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  27. Giroud JP (1997) Equation for calculating the rate of liquid migration through composite liners due to geomembrane defects. Geosynth Int 4(3–4):335–348

    Article  Google Scholar 

  28. Glatstein DA, Montoro MA, Carro Pérez ME, Francisca FM (2017) Hydraulic, chemical and biological coupling on heavy metals transport through landfills liners. J Solid Waste Technol Manag 43(3):261–269(9)

    Google Scholar 

  29. Giroud JP, Bonaparte R (1989) Leakage through liners constructed with geomembranes. Part I. Geomembrane liners. Geotext Geomembr 8(2): 27–67

    Google Scholar 

  30. Touze-Foltz N, Barroso M (2006) Empirical equations for calculating the rate of liquid flow through GCL-geomebrane composite liners. Geosynth Int 13(2):73–82

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CONICET, ANPCyT (PICT-2014-3101), and SECyT-UNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco M. Francisca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francisca, F.M., Mozejko, C.A., Glatstein, D.A. (2020). Mechanical, Hydraulic, and Chemical Behavior of Steel Slag-Amended Loessical Silt–Bentonite Liners. In: Reddy, K.R., Agnihotri, A.K., Yukselen-Aksoy, Y., Dubey, B.K., Bansal, A. (eds) Sustainable Environmental Geotechnics. Lecture Notes in Civil Engineering, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-51350-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51350-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51349-8

  • Online ISBN: 978-3-030-51350-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics