Skip to main content

Bioremediation: Recent Advancements and Limitations

  • Conference paper
  • First Online:
Sustainable Environmental Geotechnics

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 89))

  • 527 Accesses

Abstract

Bioremediation is a process that uses living organisms, mostly naturally occurring microorganisms, to degrade, detoxify, and/or transform contaminants from wastewater and contaminated soils. The technology is considered as a cost-effective and environmentally friendly approach, and has been used to decontaminate different kinds of contaminants, such as toxic heavy metals and organic compounds. With emphasis on biodegradation of volatile organic compounds (VOCs), one of the most common contaminants that occur both in developed and developing countries, this paper overviews some recent advancements and limitations associated with biodegradation. The most significant advancements include biodegradation of multiple contaminants and understanding of microbial process including the use of next-generation sequencing (NGS), and stable-isotope probing (SIP) techniques to identify functional microbial species. The limitations and future challenges include, but not limited to selecting and supplying stimulating materials, and promoting contact between contaminants, microorganisms, and stimulating materials in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Environment Agency Homepage,http://www.eea.europa.eu/themes/soil/soil-threats. Last accessed 16 June 2009

  2. Geo-Environmental Protection Center (2000) Estimation of the costs of countermeasures to soil contamination in our country (In Japanese)

    Google Scholar 

  3. Ministry of the Environment, Japan (2005) The results of the survey on enforcement status of the soil contamination countermeasures act and numbers and trends of soil contamination investigations and countermeasures in the fiscal year 2013 (In Japanese)

    Google Scholar 

  4. Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  Google Scholar 

  5. Yoshikawa M, Zhang M, Toyota K (2017) Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ 32(3):188–200

    Article  Google Scholar 

  6. Hata J, Miyata N, Kim E-S, Takamizawa K, Iwahori K (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. J Biosci Bioeng 97(3):196–201

    Google Scholar 

  7. Kim ES, Nomura I, Hasegawa Y, Takamizawa K (2006) Characterization of a newly isolated cis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1. Biotechnol Bioprocess Eng 11(6):553–556

    Google Scholar 

  8. Holliger C, Schraa G, Stams AJ, Zehnder AJ (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991–2997

    Article  Google Scholar 

  9. He J, Ritalahti KM, Yang K, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  Google Scholar 

  10. Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra-and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45(4):1555–1562

    Google Scholar 

  11. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7(9):1442–1450

    Google Scholar 

  12. Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72(3):1980–1987

    Article  Google Scholar 

  13. Cheng D, He J (2009) Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75(18):5910–5918

    Google Scholar 

  14. Uchino Y, Miura T, Hosoyama A, Ohji S, Yamazoe A, Ito M et al (2015) Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci 10(1):102

    Google Scholar 

  15. Maymo-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568–1571

    Article  Google Scholar 

  16. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65(12):5212–5221

    Article  Google Scholar 

  17. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65(7):1474–1481

    Google Scholar 

  18. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives Microbiol 165(2):132–140

    Google Scholar 

  19. Fathepure BZ, Nengu JP, Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53(11):2671–2674

    Article  Google Scholar 

  20. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. Uses Tetrachloroethylene and Trichloroethylene as Electron Acceptors. Int J Syst Bacteriol 47(4):1262–1263

    Google Scholar 

  21. Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA et al (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72(4):2775–2782

    Google Scholar 

  22. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives Microbiol 163(1):48–56

    Google Scholar 

  23. Nelson MJ, Montgomery SO, O’neill EJ, Pritchard PH (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52(2):383–384

    Google Scholar 

  24. Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318(2):137–142

    Article  Google Scholar 

  25. Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59(4):960–967

    Article  Google Scholar 

  26. Hartmans S, de Bont JAM, Tramper J, Luyben KChAM (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7(6):383–388

    Google Scholar 

  27. Le NB, Coleman NV (2011) Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation 22(6):1095–1108

    Article  Google Scholar 

  28. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68(12):6162–6171

    Article  Google Scholar 

  29. Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55(11):2960–2964

    Article  Google Scholar 

  30. Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55(11):2819–2826

    Article  Google Scholar 

  31. Arciero D, Vannelli T, Logan M, Hopper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas Europaea. Biochem Biophys Res Commun 159(2):640–643

    Article  Google Scholar 

  32. Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63(9):3607–3613

    Article  Google Scholar 

  33. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a β-Proteobacterium. Appl Environ Microbiol 68(6):2726–2730

    Article  Google Scholar 

  34. McClay K, Fox BG, Steffan RJ (1996) Chloroform mineralization by toluene-oxidizing bacteria. Appl Environ Microbiol 62(8):2716–2722

    Article  Google Scholar 

  35. McClay K, Streger SH, Steffan RJ (1995) Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl Environ Microbiol 61(9):3479–3481

    Google Scholar 

  36. Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54(7):1703–1708

    Article  Google Scholar 

  37. Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol 62(3):825–833

    Article  Google Scholar 

  38. Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60(2):542–548

    Article  Google Scholar 

  39. Ensign SA, Hyman MR, Arp DJ (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl Environ Microbiol 58(9):3038–3046

    Article  Google Scholar 

  40. Yoshikawa M, Zhang M, Toyota K (2017) Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane. Water Air Soil Pollut 228:25

    Article  Google Scholar 

  41. Radajewski SR, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  Google Scholar 

  42. Yoshikawa M, Zhang M, Kurisu F, Toyota K (2017) Bacterial degraders of coexisting dichloromethane, benzene, and toluene, identified by stable-isotope probing. Water Air Soil Pollut 228:418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Yoshikawa, M. (2020). Bioremediation: Recent Advancements and Limitations. In: Reddy, K.R., Agnihotri, A.K., Yukselen-Aksoy, Y., Dubey, B.K., Bansal, A. (eds) Sustainable Environmental Geotechnics. Lecture Notes in Civil Engineering, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-030-51350-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51350-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51349-8

  • Online ISBN: 978-3-030-51350-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics