Skip to main content

Past and Future of Gauge Theory

  • Chapter
  • First Online:
One Hundred Years of Gauge Theory

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 199))

  • 1004 Accesses

Abstract

A brief account is sketched on how the doctrine based on local gauge invariance developed over the years, turning into a pivotal element in model building for elementary particles. This principle owes its success to being renormalizable order by order in the perturbation expansion for small coupling strengths. An important point is the requirement of unitarity and locality, which shows up in the details of the Feynman rules. After gauge fixing, one finds that the system displays an elegant new symmetry: BRST invariance. Recent experimental findings in the Large Hadron Collider may point the way to the future. To capture new clues for the future, we must bear in mind the fundamental successes of steps that were made in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this author’s opinion, Weyl may have given up too soon.

  2. 2.

    For a historical review see e.g. A. Pais [2]

References

  1. H. Weyl, Raum, Zeit, Materie [Space, Time, Matter], in Lectures on General Relativity (Springer, Berlin, 1993 [1921]). ISBN 3-540-56978-2 (in German)

    Google Scholar 

  2. A. Pais, Inward Bound: Of Matter and Forces in the Physical World (Clarendon Press, 1988). ISBN: 9780198519973

    Google Scholar 

  3. R.P. Feynman, Relativistic cutoff for quantum electrodynamics. Phys. Rev. 74, 1430 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Schwinger, On Quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416 (1948)

    Article  ADS  Google Scholar 

  5. Tomonaga, S. On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. Prog. Theor. Phys. 1, 27–42 (1946)

    Google Scholar 

  6. F.J. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Veltman, Perturbation theory of massive Yang-Mills fields. Nucl. Phys. B 7, 637 (1968)

    Article  ADS  Google Scholar 

  8. C.N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96 191 (1954)

    Google Scholar 

  9. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19 154 (1961)

    Google Scholar 

  10. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345 (1961)

    Google Scholar 

  11. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964); id., Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964); id., Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)

    Google Scholar 

  12. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. G. ’t Hooft, Renormalizable Lagrangians for massive Yang–Mills fields. Nucl. Phys. B35, 167 (1971)

    Google Scholar 

  14. G. ’t Hooft, M.  Veltman, Diagrammar. CERN Report 73/9 (1973), reprinted in Particle interactions at very high energies. Nato Adv. Study Inst. Series, Sect. B 4b, 177

    Google Scholar 

  15. G. ’t Hooft, Renormalization of massless Yang-Mills fields. Nucl. Phys. B33, 173 (1971)

    Google Scholar 

  16. B.S. DeWitt, Theory of radiative corrections for non-abelian gauge fields. Phys. Rev. Lett. 12, 742 (1964); id., Quantum theory of gravity. 1. The Canonical theory. Phys. Rev. 160, 1113 (1967); id., Quantum theory of gravity. 2. The Manifestly Covariant theory. Phys. Rev. 162, 1195 (1967); id., Quantum theory of gravity. 3. Applications of the Covariant theory. Phys. Rev. 162, 1239 (1967)

    Google Scholar 

  17. L.D. Faddeev, V.N. Popov, Perturbation theory for Gauge-invariant fields. Phys. Lett. 25B, 29 (1967)

    Google Scholar 

  18. A. Slavnov, Ward identities in Gauge theories. Theor. Math. Phys. 10, 153 (1972) (in Russian), Theor. Math. Phys. 10, 99 (1972) (Engl. Transl.)

    Google Scholar 

  19. J.C. Taylor, Ward identities and charge renormalization of the Yang-Mills field. Nucl. Phys. B 33, 436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Becchi, A. Rouet, R. Stora, Renormalization of the Abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975); id., Renormalization of Gauge theories. Ann. Phys. (NY) 98, 287 (1976)

    Google Scholar 

  21. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. Lebedev Prepr. FIAN 39 (1975) (In Russian). e-Print arxiv.org/0812.0580 [hep-th]

  22. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color Octet Gluon picture. Phys. Lett. 47B, 365 (1973)

    Article  ADS  Google Scholar 

  23. G. ’t Hooft, Confinement and topology in non-abelian Gauge theories. Lectures given at the Schladming Winterschool, 20–29 February 1980, Acta Physica Austriaca. Suppl. XXII. 1980, 531 (1980)

    Google Scholar 

  24. G. ’t Hooft, Local conformal symmetry: the missing symmetry component for space and time. ITP-UU-14/25; SPIN-14/19, Int. J. Modern Phys. D24(12), 1543001 (2015), arxiv.org/1410.6675 v2 [gr-qc]

  25. P.D. Mannheim, Solution to the ghost problem in fourth order derivative theories. Found. Phys. 37, 532–571 (2007), arxiv.org/hep-th/0608154

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard ’t Hooft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hooft, G. (2020). Past and Future of Gauge Theory. In: De Bianchi, S., Kiefer, C. (eds) One Hundred Years of Gauge Theory. Fundamental Theories of Physics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-51197-5_13

Download citation

Publish with us

Policies and ethics