Skip to main content

Production Systems Simulation Considering Non-productive Times and Human Factors

  • Conference paper
  • First Online:
Artificial Intelligence and Industrial Applications (A2IA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1193))

Abstract

For decades and all around the world, the main goal of industries is financial and economic profit. Lately, new approaches additionally aim to better the operator’s working conditions. With the help of simulation, these approaches can be tested in a much cheaper, faster and easier manner before real-life implementation. In this paper, new strategies have been tested to improve working conditions for the operator while maintaining high performance and productivity. The implementation of human factors and margins of maneuver into a production system is explored to improve working conditions through non-productive times. One main non-productive time is considered: unnecessary movement. A model describing a real-life scenario is suggested, as well as strategies to reduce and leverage non-productive times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivera, L., Chen, F.F.: Measuring the impact of Lean tools on the cost–time investment of a product using cost–time profiles 23, 684–689 (2007)

    Google Scholar 

  2. El Mouayni, I., Etienne, A., Siadat, A., Dantan, J., Lux, A.: AEN-PRO: Agent-based simulation tool for performance and working conditions assessment in production systems using workers’ margins of manoeuver. IFAC-PapersOnLine 50(1), 14236–14241 (2017)

    Article  Google Scholar 

  3. Abubakar, M.I., Wang, Q.: Key human factors and their effects on human centered assembly performance. Int. J. Ind. Ergon. 69, 48–57 (2019)

    Google Scholar 

  4. Phillips, R.O.: What is fatigue and how does it affect the safety performance of human transport operators? (2014)

    Google Scholar 

  5. Petronijevic, J., Etienne, A., Dantan, J.: Human factors under uncertainty: a manufacturing systems design using simulation-optimisation approach. Comput. Ind. Eng. 127, 665–676 (2019)

    Article  Google Scholar 

  6. Digiesi, S., Kock, A.A.A., Mummolo, G., Rooda, J.E.: The effect of dynamic worker behavior on flowline performance. IFAC Proc. 39(3), 341–346 (2006)

    Article  Google Scholar 

  7. Lanfranchi, J.B., Duveau, A.: Explicative models of musculoskeletal disorders (MSD): from biomechanical and psychosocial factors to clinical analysis of ergonomics. Rev. Eur. Psychol. Appl. 58(4), 201–213 (2008)

    Article  Google Scholar 

  8. El Mouayni, I., Etienne, A., Dantan, J., Lux, A.: Développement d ’ une méthode outillée pour l ’ amélioration des aspects santé-sécurité dès les premières phases de la conception des systèmes de production par la prise en compte des marges de manœuvre temporelles (2018)

    Google Scholar 

  9. Ebert, P., Freibichler, W.: Nudge management: applying behavioural science to increase knowledge worker productivity. J. Organ. Des. 6(1), 4 (2017)

    Google Scholar 

  10. Ghobakhloo, M.: Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 252, 119869 (2020)

    Article  Google Scholar 

  11. Givi, Z.S., Jaber, M.Y., Neumann, W.P.: Modelling worker reliability with learning and fatigue. Appl. Math. Model. 39(17), 5186–5199 (2015)

    Article  MathSciNet  Google Scholar 

  12. Jaber, M.Y., Givi, Z.S., Neumann, W.P.: Incorporating human fatigue and recovery into the learning-forgetting process. Appl. Math. Model. 37(12–13), 7287–7299 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kolus, A., Wells, R., Neumann, P.: Production quality and human factors engineering: a systematic review and theoretical framework. Appl. Ergon. 73, 55–89 (2018)

    Google Scholar 

  14. Neumann, W.P., Kolus, A., Wells, R.W.: Human factors in production system design and quality performance—a systematic review. IFAC-PapersOnLine 49(12), 1721–1724 (2016)

    Article  Google Scholar 

  15. El Mouayni, I., Etienne, A., Siadat, A., Dantan, J., Lux, A.: A simulation-based approach for enhancing health aspects in production systems by integrating work margins. IFAC-PapersOnLine 49(12), 1697–1702 (2016)

    Article  Google Scholar 

  16. El Mouayni, I., Etienne, A., Lux, A., Siadat, A., Dantan, J.: A simulation-based approach for time allowances assessment during production system design with consideration of worker’s fatigue, learning and reliability. Comput. Ind. Eng. 139, 105650 (2020)

    Google Scholar 

  17. Low, S.N., Chong, S.H., Sim, H.Y., Razalli, S., Kamaruddin, S.: Measurement of overall performance effectiveness in setup improvement. J. Ind. Eng. 2014, 1–7 (2014)

    Google Scholar 

  18. Stamatis, D.H.: The OEE Primer: Understanding Overall Equipment Effectiveness, Reliability, and Maintainability (2010)

    Google Scholar 

  19. Manotas Duque, D.F., Cadavid, L.R.: Lean manufacturing measurement: the relationship between lean activities and lean metrics. Estud. Gerenciales 23(105), 69–83 (2007)

    Google Scholar 

  20. Garre, P., Nikhil Bharadwaj, V.V.S., Shiva Shashank, P., Harish, M., Sai Dheeraj, M.: Applying lean in aerospace manufacturing. Mater. Today Proc. 4(8), 8439–8446 (2017)

    Google Scholar 

  21. Foulloy, L., Clivillé, V., Berrah, L.: A fuzzy temporal approach to the Overall Equipment Effectiveness measurement. Comput. Ind. Eng. 127, 103–115 (2019)

    Google Scholar 

  22. Singh, R., Shah, D.B., Gohil, A.M., Shah, M.H.: Overall Equipment Effectiveness (OEE) calculation—automation through hardware & software development. Procedia Eng. 51, 579–584 (2013)

    Article  Google Scholar 

  23. Badiger, A.S., Gandhinathan, R.: A proposal: evaluation of OEE and impact of six big losses on equipment earning capacity. Int. J. Process Manag. Benchmarking 2(3), 234–248 (2008)

    Article  Google Scholar 

  24. Bozejko, W., Hejducki, Z., Wodecki, M.: Flowshop scheduling of construction processes with uncertain parameters. Arch. Civ. Mech. Eng. 19(1), 194–204 (2019)

    Article  Google Scholar 

  25. Majid, M.A., Fakhreldin, M., Zuhairi, K.Z.: Comparing Discrete Event and Agent Based Simulation in Modelling Human Behaviour at Airport Check-in Counter, vol. 1, pp. 510–522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Taleb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taleb, I., Etienne, A., Siadat, A. (2021). Production Systems Simulation Considering Non-productive Times and Human Factors. In: Masrour, T., Cherrafi, A., El Hassani, I. (eds) Artificial Intelligence and Industrial Applications. A2IA 2020. Advances in Intelligent Systems and Computing, vol 1193. Springer, Cham. https://doi.org/10.1007/978-3-030-51186-9_11

Download citation

Publish with us

Policies and ethics