Skip to main content

Specialized Metabolites and Plant Defence

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 22))

Abstract

Infected or elicited plants accumulate an array of plant defensive compounds. Nowadays, it is well accepted that plant secondary metabolites are involved in this plant defence system. The process of inducing plant resistance using elicitors is environmental friendly and is advantageous over the chemical based pesticides. It is like stimulation of the plant’s own “immune” potential rather than on suppression of pathogens. This strategy could be an alternative solution to reduce the use of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dearing MD, Foley WJ, McLean S (2005) The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu Rev Evol Syst 36:169–189

    Article  Google Scholar 

  2. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop protection 29:913–920

    Article  CAS  Google Scholar 

  3. Dussourd DE, Denno RF (1991) Deactivation of plant defense: correspondence between insect behavior and secretory canal architecture. Ecology 72:1383–1396

    Article  Google Scholar 

  4. Becerra JX (1994) Squirt-gun defense in Bursera and the chrysomelid counterploy. Ecology 75:1991–1996

    Article  Google Scholar 

  5. Phillips MA, Rodney B (1999) Croteau Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    Article  CAS  PubMed  Google Scholar 

  6. Evans PH, Becerra JX, Venable DL, Bowers WS (2000) Chemical analysis of squirt-gun defense in Bursera and counter defense by chrysomelid beetles. J Chem Ecol 26:745–754

    Article  CAS  Google Scholar 

  7. Becerra JX, Venable DL, Evans PH, Bowers WS (2001) Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. Am Zool 41:865–876

    CAS  Google Scholar 

  8. Ramanujan K (2008) “Discoveries: Milkweed evolves to shrug off predation” Northern Woodlands (Center for Northern Woodlands Education). Winter 15:56

    Google Scholar 

  9. Field B, Jordán F, Osbourn A (2006) First encounters – deployment of defence-related natural products by plants. New Phytol 172:193–207

    Article  CAS  PubMed  Google Scholar 

  10. Mithöfer A, Boland W (2012) Plant defense against herbivores: Chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  11. Soledade M, Pedras C, Yaya EE (2015) Plant chemical defenses: Are all constitutive antimicrobial metabolites phytoanticipins? Nat Prod Comm 10:209–218

    Google Scholar 

  12. Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107:69–78

    Google Scholar 

  13. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–18061

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wink M (2008) Evolution of secondary plant metabolism. In: Encyclopedia of Life Sciences (ELS). Wiley, Chichester

    Google Scholar 

  16. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnobotanical to modern perspective. Springer, Heidelberg

    Google Scholar 

  17. Purkayastha RP (2017) Progress in phytoalexin research during the past 50 years. In: Handbook of phytoalexin metabolism and action. Routledge, Boca Raton, pp 1–39

    Google Scholar 

  18. Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed) Functions and biotechnology of plant secondary metabolites, annual plant reviews, vol 39, 2nd edn. Wiley Blackwell, Ames

    Google Scholar 

  19. de Brito FR, Martinoia E (2018) The vacuolar transportome of plant specialized metabolites. Plant Cell Physiol 59:1326–1336

    Google Scholar 

  20. Dixon RA (2001) Natural products and disease resistance. Nature 411:843–847

    CAS  PubMed  Google Scholar 

  21. Matsui K, Koeduka T (2016) Green leaf volatiles in plant signaling and response. Subcellular Biochem 86:427–443

    CAS  Google Scholar 

  22. Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci U S A 106:7314–7319

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamm G, Carré V, Poutaraud A, Maunit B, Frache G, Merdinoglu D, Muller J-F (2010) Determination and imaging of metabolites from Vitis vinifera leaves by laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:335–342

    CAS  PubMed  Google Scholar 

  24. Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academis, New York

    Google Scholar 

  25. Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived. Prod Phytochem Rev 9:357–378

    CAS  Google Scholar 

  26. Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga CG (ed) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, New Jersey

    Google Scholar 

  27. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    CAS  PubMed  Google Scholar 

  28. Gorniak I, Bartoszewski R, Kroliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18:241–272

    CAS  Google Scholar 

  29. Koskimaki JJ, Hokkanen J, Jaakola L, Suorsa M, Tolonen A, Sampo M, Pirttila AM, Hohtola A (2009) Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629–640

    Google Scholar 

  30. Skadhauge B, Thomsen K, von Wettstein D (1997) The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    CAS  Google Scholar 

  31. Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128:321–328

    CAS  Google Scholar 

  32. Collingborn FMB, Gowen SR, Mueller-Harvey I (2000) Investigations into the biochemical basis of nematode resistance in roots of three Musa cultivars in response to Radopholus similis infection. J Agric Food Chem 48:5297–5301

    CAS  PubMed  Google Scholar 

  33. Lattanzio V (2003) Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J Appl Bot 77:128–146

    CAS  Google Scholar 

  34. Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathol 3:371–390

    CAS  Google Scholar 

  35. Stevanovic T, Diouf PN, Garcia-Perez ME (2009) Bioactive polyphenols from healthy diets and forest biomass. Curr Nutr Food Sci 5:264–295

    CAS  Google Scholar 

  36. Rivière C, Pawlus A, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    PubMed  Google Scholar 

  37. Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotech 86:1293–1312

    CAS  Google Scholar 

  38. Veitch NC (2007) Isoflavonoids of the Leguminosae. Nat Prod Rep 24:417–464

    CAS  PubMed  Google Scholar 

  39. Al-Maharik N (2019) Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 36:1156

    CAS  PubMed  Google Scholar 

  40. Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochem 63:753–763

    Article  CAS  Google Scholar 

  41. Kaducová M, Monje-Rueda MD, García-Calderón M, Pérez-Delgado CM, Eliášová A, Gajdošová S, Petrul’ová V, Betti M, Márquez AJ, Pal’ove-Balang P (2019) Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. J Plant Physiol 236:88–95

    Article  PubMed  CAS  Google Scholar 

  42. Dixon RA, Ferreira D (2002) Molecules of interest, genistein. Phytochem 60:205–211

    Article  CAS  Google Scholar 

  43. Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007) Inaugural article, different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Russell GB, Sutherland ORW, Hutchins RFN, Christmas PE (1978) Vestitol: A phytoalexin with insect feeding-deterrent activity. J Chem Ecol 4:571–579

    CAS  Google Scholar 

  45. Latunde-Dada AO, Lucas JA (1985) Involvement of the phytoalexin medicarpin in the differential response of callus lines of lucerne (Medicago sativa) to infection by Verticillium albo-atrum. Physiol Plant Pathol 26:31–42

    CAS  Google Scholar 

  46. Rivera-Vargas LI, Schmitthenner AF, Graham TL (1993) Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochem 32:851–857

    CAS  Google Scholar 

  47. Kramer RP, Hindorf H, Jha HC, Kallage J, Zilliken F (1984) Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochem 23:2203–2205

    Google Scholar 

  48. Weidenborner M, Hindorf H, Jha HC, Tsotsonos P, Egge H (1990) Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochem 29:801–803

    Google Scholar 

  49. Rahman MM, Gray AI, Khondkar P, Sarker SD (2008) Antibacterial and Antifungal Activities of the Constituents of Flemingia paniculata. Pharm Biol 46:356–359

    CAS  Google Scholar 

  50. Madani S, Singh GN, Kohli K, Ali M, Kumar Y, Singh RM, Prakash O (2009) Isoflavonoids from flemingia strobilifera (L) R. Br. roots. Acta Poloniae Pharm Drug Res 66:297–303

    Google Scholar 

  51. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    Article  CAS  PubMed  Google Scholar 

  52. Yiğit D, Yiğit N, Mavi A (2009) Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz J Med Biol Res 42:346–352

    Article  PubMed  Google Scholar 

  53. Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K et al (2008) Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol 116:377–380

    Article  PubMed  Google Scholar 

  54. Kim HJ, Suh HJ, Lee CH et al (2010) Antifungal activity of glyceollins isolated from soybean elicited with Aspergillus sojae. J Agric Food Chem 58:9483–9487

    Article  CAS  PubMed  Google Scholar 

  55. Cheng J, Yuan C, Graham TL (2011) Potential defense-related prenylated isoflavones in lactofen-induced soybean. Phytochem 72:875–881

    Article  CAS  Google Scholar 

  56. Aslam SN, Stevenson PC, Kokubun T, Hall DR (2009) Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes. Microbiol Res 164:191–195

    Article  CAS  PubMed  Google Scholar 

  57. Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    Article  CAS  PubMed  Google Scholar 

  58. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  59. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  CAS  PubMed  Google Scholar 

  60. Richter H, Pezet R, Viret O, Gindro K (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248–260

    Article  CAS  Google Scholar 

  61. Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Path 72:128–133

    Article  CAS  Google Scholar 

  62. Adrian M, Daire X, Jeandet P, Breuil AC, Weston LA, Bessis R, Boudon E (1997) Comparisons of stilbene synthase activity (resveratrol amounts and stilbenes synthase mRNAs levels) in grapevines treated with biotic and abiotic phytoalexin inducers. Am J Enol Viticult 48:394–395

    Google Scholar 

  63. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  64. Langcake P, McCarthy WV (1979) The relationship of resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis 18:244–253

    CAS  Google Scholar 

  65. Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120

    Article  Google Scholar 

  66. Morales M, Ros Barcelo A, Pedreno MA (2000) Plant stilbenes: recent advances in their chemistry and biology. Adv Plant Physiol 3:39–70

    Google Scholar 

  67. Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  PubMed  Google Scholar 

  68. Schultz TP, Boldin WD, Fisher TH, Nicholas DD, McMurtrey KD, Pobanz K (1992) Structure-fungicidal properties of some 3- and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemistry 31:3801–3806

    Article  CAS  Google Scholar 

  69. Gabaston J, Richard T, Cluzet S, Palos Pinto A, Dufour MC, Corio-Costet MF, Mérillon JM (2017) Pinus pinaster knot: a source of polyphenols against Plasmopara viticola. J Agr Food Chem 65:8884–8891

    Article  CAS  Google Scholar 

  70. Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53:356–362

    Article  CAS  PubMed  Google Scholar 

  71. Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG (2007) Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J Agric Food Chem 55:4913–4920

    Article  CAS  PubMed  Google Scholar 

  72. Pezet R, Gindro K, Viret O, Spring J-L (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303

    Article  CAS  Google Scholar 

  73. Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Mérillon JM (2017) Stilbenes from Vitis vinifera L. waste: a sustainable tool for controlling Plasmopara viticola. J Agric Food Chem 65:2711–2718

    Article  CAS  PubMed  Google Scholar 

  74. Gabaston J, Leborgne C, Waffo-Teguo P, Palos Pinto A, Richard T, Cluzet S, Mérillon JM (2019) Wood and roots of major grapevine cultivars and rootstocks: a comparative analysis of stilbenes by UPLC-DAD-MS/MS and NMR. Phytochem Anal 30:320–331

    Article  CAS  PubMed  Google Scholar 

  75. Lambert C, Bisson J, Waffo-Téguo P, Papastamoulis Y, Richard T, Corio-Costet MF, Mérillon JM, Cluzet S (2012) Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family. J Agric Food Chem 60:11859–11868

    Article  CAS  PubMed  Google Scholar 

  76. Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  CAS  PubMed  Google Scholar 

  77. Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    Article  CAS  PubMed  Google Scholar 

  78. Hain R, Reif HJ, Krause E, Langebartels R, Kindle H, Vorman B, Schmelzer E, Schreier P, Stocker RH, Stenzel K (1993) Disease resistance results from foreing phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  79. Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  80. Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant-Microbe Interact 13:551–562

    Article  CAS  PubMed  Google Scholar 

  81. Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa ) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  PubMed  Google Scholar 

  82. Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203–214

    Article  CAS  PubMed  Google Scholar 

  83. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  84. Roupe KA, Remsberg CM, Yαρez JA, Davies NM (2006) Pharmacometrics of stilbenes: Seguing towards the clinic. Curr Clin Pharmacol 1:81–101

    Article  CAS  PubMed  Google Scholar 

  85. Morrissey JP (2009) Biological activity of defence-related plant secondary metabolites. In: Osbourn AE, Lanzotti V (eds) Plant derived natural products synthesis, function, and application. Springer, London

    Google Scholar 

  86. Wink M (2008) Ecological roles of alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids, structure, isolation synthesis and biology. Wiley-Vch, Weinheim

    Google Scholar 

  87. Wink M, Van Wyk B-E (2008) Mind-altering and poisonous plants of the world. Co-production: Briza Publications, Pretoria ISBN 978-3-8047-2425-9

    Google Scholar 

  88. Alonso-Villaverde V, Voinesco F, Viret O, Spring JL, Gindro K (2011) The effectiveness of stilbenes in resistant Vitaceae: Ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol Biochem 49:265–274

    Article  CAS  PubMed  Google Scholar 

  89. Kim N, Kim JK, Hwang D, Lim YH (2013) The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans. Medical Mycol 51:45–52

    Article  CAS  Google Scholar 

  90. Jian W, He D, Xi P, Li X (2015) Synthesis and biological evaluation of novel fluorine-containing stilbene derivatives as fungicidal agents against phytopathogenic fungi. J Agric Food Chem 63:9963–9969

    Article  CAS  PubMed  Google Scholar 

  91. JCO K, Barbulescu DM, Salisbury PA, Slater AT (2016) Pterostilbene is a potential candidate for control of Blackleg in Canola. PLoS ONE 11:0156186

    Google Scholar 

  92. Seppnen SK, Syrj L, von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584–593

    Article  CAS  Google Scholar 

  93. Pavela R, Waffo-Téguo P, Biais B, Richard T, Mérillon JM (2017) Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J Pest Sci 90:961–970

    Article  Google Scholar 

  94. Gabaston J, El Khawand T, Waffo-Teguo P, Decendit A, Richard T, Mérillon JM, Pavela R (2018) Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata. J Pest Sci 91:897–906

    Article  Google Scholar 

  95. Keen NT, Brurgger B (1977) Phytoalexins and chemicals that elicit their production in plants. In: Hedin PA (ed) Host plant resistance to pests, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  96. Eilert U, Wolters B, Constabel F (1986) Ultrastructure of acridone alkaloid idioblasts in roots and cell cultures of Ruta graveolens. Can J Bot 64:1089–1096

    Article  CAS  Google Scholar 

  97. Halder M, Sarkar S, Jhia S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19:1–16

    Article  CAS  Google Scholar 

  98. Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Arom Plants 12:1–12

    Google Scholar 

  99. Shilpa K, Varun K, Lakshmi BS (2010) An alternate method of drug production: eliciting secondary metabolite production using plant cell culture. J Plant Sci 5:222–247

    Article  Google Scholar 

  100. Ebel J, Cosio EG (1994) Elicitors of plant defense responses. In: Jeon KW, Jarvik J (eds) International review of cytology; a survey of cell biology, Vol 148. Academic Press Limited, London

    Google Scholar 

  101. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotech Adv 23:283–333

    CAS  Google Scholar 

  102. Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    CAS  PubMed  Google Scholar 

  103. Faurie B, Cluzet S, Mérillon J-M (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J Plant Physiol 166:1863–1877

    CAS  PubMed  Google Scholar 

  104. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  105. Krisa S, Larronde F, Budzinski H, Decendit A, Deffieux G, Mérillon J-M (1999) Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13C biolabeling. J Nat Prod 62:1688–1690

    CAS  Google Scholar 

  106. Somboon T, Chayjarung P, Pilaisangsuree V, Keawracha P, Tonglairoum P, Kongbangkerd A, Wongkrajang K, Limmongkon A (2019) Methyl jasmonate and cyclodextrin-mediated defense mechanism and protective effect in response to paraquat-induced stress in peanut hairy root. Phytochemistry 163:11–22

    CAS  PubMed  Google Scholar 

  107. Yang T, Fang L, Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Balmaceda C, Medina-Bolivar F (2015) Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in Hairy Root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J Agric Food Chem 63:3942–3950

    CAS  PubMed  Google Scholar 

  108. Arora J, Roat C, Goyal S, Ramawat KG (2009) High stilbenes accumulation in root cultures of Cayratia trifolia (L.) Domin grown in shake flasks. Acta Physiol Plant 31:1307–1312

    Google Scholar 

  109. Roat C, Ramawat KG (2009) Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotech Rep 3:135–138

    Google Scholar 

  110. Arora J, Goyal S, Ramawat KG (2010) Enhanced stilbene production in cell cultures of Cayratia trifolia through co-treatment with abiotic and biotic elicitors and sucrose. In Vitro Cell Dev Biol Plant 46:430–436

    Google Scholar 

  111. Komaikul J, Kitisripany T, Likhitwitayawuid K, Sritularak B, Tanaka H, Putalun W (2019) Improvement of stilbenoid production by 2-hydroxypropyl-β-cyclodextrin in white mulberry (Morus alba L.) callus cultures. Nat Prod Res 33:2762–2769

    CAS  PubMed  Google Scholar 

  112. Shao L, Zhao SJ, Cui TB, Liu ZY, Zhao W (2012) 2,3,5,4′- Tetrahydroxystilbene-2-O-β-D-glycoside biosynthesis by suspension cells cultures of Polygonum multiflorum Thunb and production enhancement by methyl jasmonate and salicylic acid. Molecules 17:2240–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hidalgo D, Martınez-Marquez A, Cusido R, Bru-Martınez R, Palazon J, Corchete P (2017) Silybum marianum cell cultures stably transformed with Vitis vinifera stilbene synthase accumulate t-resveratrol in the extracellular medium after elicitation with methyl jasmonate or methylated β-cyclodextrins. Eng Life Sci 17:686–694

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Borie B, Jeandet P, Parize A, Bessis R, Adrian M (2004) Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. Am J Enol Viticult 55:60–64

    CAS  Google Scholar 

  115. Liu W, Liu C, Yang C, Wang L, Li S (2010) Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122:475–481

    CAS  Google Scholar 

  116. Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Merillon J-M (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    CAS  PubMed  Google Scholar 

  117. Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71

    CAS  PubMed  Google Scholar 

  118. Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624

    CAS  PubMed  Google Scholar 

  119. Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479

    CAS  Google Scholar 

  120. Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbenes biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132–139

    PubMed  PubMed Central  Google Scholar 

  121. Zamboni A, Vrhovsek U, Kassemeyer H-H, Mattivi F, Velasco R (2006) Elicitor – induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45:63–68

    CAS  Google Scholar 

  122. Zamboni A, Gatto P, Cestaro A, Pilati S, Viola R, Mattivi F, Moser C, Velasco R (2009) Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics 10:363–376

    PubMed  PubMed Central  Google Scholar 

  123. Laura R, Franceschetti M, Ferri M, Tassoni A, Bagni N (2007) Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia 60:169–171

    Google Scholar 

  124. Keskin N, Kunter B (2010) Production of trans-resveratrol in callus tissue of öküzgözü (Vitis vinifera l.) in response to ultraviolet-c irradiation. J Anim Plant Sci 20:197–200

    Google Scholar 

  125. Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    CAS  PubMed  Google Scholar 

  126. Telef N, Saigne C, Cluzet S, Barrieb F, Hamdi S, Mérillon J-M (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    PubMed  Google Scholar 

  127. Santamaria AR, Antonacci D, Caruso G, Cavaliere C, Gubbiotti R, Laganà A, Valletta A, Pasqua G (2010) Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Nat Prod Res 24:1488–1498

    CAS  PubMed  Google Scholar 

  128. Andi SA, Gholami M, Ford CM, Maskani F (2019) The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. J Photochem Photobiol B 199:111625

    CAS  PubMed  Google Scholar 

  129. Donati L, Ferretti L, Frallicciardi J, Rosciani R, Valletta A, Pasqua G (2019) Stilbene biosynthesis and gene expression in response to methyl jasmonate and continuous light treatment in Vitis vinifera cv. Malvasia del Lazio and Vitis rupestris Du Lot cell cultures. Physiol Plantarum 166:646–662

    CAS  Google Scholar 

  130. Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult 122:197–211

    CAS  Google Scholar 

  131. Xu A, Zhan JC, Huang WD (2015) Combined elicitation of chitosan and ultraviolet C enhanced stilbene production and expression of chitinase and b-1,3-glucanase in Vitis vinifera cell suspension cultures. Plant Cell Tissue Organ Cult 124:105–117

    Google Scholar 

  132. Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F (2014) Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem 74:50–69

    CAS  PubMed  Google Scholar 

  133. Santamaria AR, Innocenti M, Mulinacci N, Melani F, Valletta A, Sciandra I, Pasqua G (2012) Enhancement of viniferin production in Vitis vinifera L. cv. Alphonse Lavallée cell suspensions by low-energy ultrasound alone and in combination with methyl jasmonate. J Agric Food Chem 60:11135–11142

    CAS  PubMed  Google Scholar 

  134. Tassoni A, Durante L, Ferri M (2012) Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. J Plant Physiol 169:775–781

    CAS  PubMed  Google Scholar 

  135. Belchı-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreno MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89

    PubMed  Google Scholar 

  136. Krzyzaniak Y, Negrel J, Lemaitre-Guillier C, Clément G, Mouille G, Klinguer A, Trouvelot S, Héloir MC, Adrian M (2018) Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. Plant Physiol Biochem 123:141–148

    CAS  PubMed  Google Scholar 

  137. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert J-M, Pugin A (2006) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microbe Interact 16:1118–1128

    Google Scholar 

  138. Guerrero F, Puertas B, Fernández MI, Palm M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: Comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238

    CAS  Google Scholar 

  139. Schmidlin L, Poutaraud A, Claude P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tamm L, Thürig B, Fliessbach A, Goltlieb AE, Karavani S, Cohen Y (2011) Elicitors and soil management to induce resistance against fungal plant diseases. Wageningen J Life Sci 58:131–137

    Google Scholar 

  141. Bavaresco L, Vezzulli S, Battilani P, Giorni P, Pietri A, Bertuzzi T (2003) Effect of Ochratoxin A-Producing Aspergilli on stilbenic phytoalexin synthesis in grapes. J Agric Food Chem 51:6151–6157

    CAS  PubMed  Google Scholar 

  142. Bavaresco L, Vezzulli S, Civardi S, Gatti M, Battilani P, Pietri A, Ferrari F (2008) Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and ε-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius. J Agric Food Chem 56:2085–2089

    CAS  PubMed  Google Scholar 

  143. Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet M-F, Merillon J-M (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54:9119–9125

    CAS  PubMed  Google Scholar 

  144. Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am J Enol Viticult 58:530–533

    CAS  Google Scholar 

  145. Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet M-F, Merillon J-M (2008) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787

    CAS  PubMed  Google Scholar 

  146. Vezzulli S, Battilani P, Bavaresco L (2007) Stilbene-synthase gene expression after Aspergillus carbonarius infection in grapes. Am J Enol Viticult 58:32–134

    Google Scholar 

  147. Shiraishi M, Chijiwa H, Fujishima H, Muramoto K (2010) Resveratrol production potential of grape flowers and green berries to screen genotypes for gray mold and powdery mildew resistance. Euphytica 176:371–381

    CAS  Google Scholar 

  148. Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem 201:213–221

    CAS  PubMed  Google Scholar 

  149. Portu J, López R, Santamaría P, Garde-Cerdán T (2018) Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Scientia Hort 240:378–386

    CAS  Google Scholar 

  150. Ruiz-García Y, Romero-Cascales I, Bautista-Ortín AB, Gil-Muñoz R, Martínez-Cutillas A, Gómez-Plaza E (2013) Increasing bioactive phenolic compounds in grapes: response of six Monastrell grape clones to Benzothiadiazole and Methyl Jasmonate treatments. Am J Enol Viticult 64:459–465

    Google Scholar 

  151. Lucini L, Baccolo G, Rouphael Y, Colla G, Bavaresco L, Trevisan M (2018) Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry 156:1–8

    CAS  PubMed  Google Scholar 

  152. Park S-Y, Lee W-Y, Park Y, Ahn J-K (2006) Effects of nitrogen source and bacterial elicitor on isoflavone accumulation in root cultures of Albizzia kalkora (Roxb.) Prain. J Integr Plant Biol 48:1108–1114

    CAS  Google Scholar 

  153. Gai QY, Jiao J, Luo M, Wang W, Gu CB, Fu YJ, Ma W (2016) Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochem 51:642–649

    CAS  Google Scholar 

  154. Gai QY, Jiao J, Wang X, Liu J, Wang ZY, Fu YJ (2019) Chitosan promoting formononetin and calycosin accumulation in Astragalus membranaceus hairy root cultures via mitogen-activated protein kinase signaling cascades. Sci Rep 9:10367

    PubMed  PubMed Central  Google Scholar 

  155. Jiao J, Gai QY, Wang W, Luo M, Gu CB, Fu YJ, Ma W (2015) Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus Hairy Root cultures. J Agric Food Chem 63:8216–8224

    CAS  PubMed  Google Scholar 

  156. Liu J, Lan X, Lv S, Bao R, Yuan Y, Wu S, Quan X (2019) Salicylic acid involved in chilling-induced accumulation of calycosin-7-O-β-d-glucoside in Astragalus membranaceus adventitious roots. Acta Physiol Plant 41:120

    Google Scholar 

  157. Fatima B, Muhammad A, Amanat A, Seema I (2009) Phytoalexins induced in Cicer arietinum characterized by LC-MS technique. Indian J Plant Physiol 14:1–6

    Google Scholar 

  158. Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679

    CAS  PubMed  Google Scholar 

  159. Jeong YJ, An CH, Park SC, Pyun JW, Lee J, Kim SW, Kim HS, Kim H, Jeong JC, Kim CY (2018) Methyl Jasmonate increases isoflavone production in soybean cell cultures by activating structural genes involved in isoflavonoid. J Agric Food Chem 66:4099–4105

    CAS  PubMed  Google Scholar 

  160. Nagashima S, Inagaki R, Kubo A, Hirotani M, Yoshikawa T (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 218:456–459

    CAS  PubMed  Google Scholar 

  161. Bednarek P, Frański R, Kerhoas L, Einhorn J, Wojtaszek P, Stobiecki M (2001) Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochem 56:77–85

    CAS  Google Scholar 

  162. Goâmez-Vaâsquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM (2004) Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged Cassava (Manihot esculenta) suspension cells and leaves. Ann Bot 94:87–97

    Google Scholar 

  163. Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Durango D, Quiñones W, Torres F, Rosero Y, Gil J, Echeverri F (2002) Phytoalexin accumulation in Colombian bean varieties and aminosugars as elicitors. Molecules 7:817–832

    CAS  PubMed Central  Google Scholar 

  165. Shinde AN, Malpathak N, Fulzele DP (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14:288–294

    CAS  Google Scholar 

  166. Shinde AN, Malpathak N, Fulzele DP (2009) Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14:612–618

    CAS  Google Scholar 

  167. Zaheer M, Reddy VD, Giri CC (2016) Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Natural Prod Res 30:1542–1547

    CAS  Google Scholar 

  168. Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Org Cult 103:333–342

    CAS  Google Scholar 

  169. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotech Lett 33:369–374

    CAS  Google Scholar 

  170. Kirakosyan A, Kaufman PB, Chang SC, Warber S, Bolling S, Vardapetyan H (2006) Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Rep 25:1387–1391

    CAS  PubMed  Google Scholar 

  171. Goyal S, Ramawat KG (2008) Increased isoflavonoids accumulation in cell suspension cultures of Pueraria tuberosa by elicitors. Indian J Biotech 7:378–382

    CAS  Google Scholar 

  172. Goyal S, Ramawat KG (2008) Improvement of isoflavonoids accumulation by ethrel in cell suspension cultures of Pueraria tuberosa, a woody legume. Acta Physiol Plant 30:849–853

    CAS  Google Scholar 

  173. Tebayashi S-I, Ishihara A, Iwamura H (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J Exp Bot 52:681–689

    CAS  PubMed  Google Scholar 

  174. Kašparová M, Siatka T (2014) Production of flavonoids and isoflavonoids in jasmonic acid-induced red clover suspension cultures. Ceska a Slovenska Farmacie 63:17–21

    PubMed  Google Scholar 

  175. Gaige AR, Ayella A, Shuai B (2010) Methyl jasmonate and ethylene induce partial resistance in Medicago truncatula against the charcoal rot pathogen Macrophomina phaseolina. Physiol Mol Plant Path 74:412–418

    Article  CAS  Google Scholar 

  176. Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Biores Bioproc 2:n°5

    Google Scholar 

  177. Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine-ammonia-lyase in pea seedlings. Plant Physiol 47:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Abeles FB (1973) Ethylene in plant biology. Springer, New York

    Google Scholar 

  179. Rhodes JM, Wooltorton LSC (1978) The biosynthesis of phenolic compounds in wounded plant storage tissues. In: Kahl G (ed) Biochemistry of wounded plant tissue. Walter de Gruyter & Co., Berlin

    Google Scholar 

  180. Li N, Han X, Feng D, Yuan D, Huang LJ (2019) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? Int J Mol Sci 20:671

    Article  PubMed Central  CAS  Google Scholar 

  181. Jiao Y, Xu W, Duan D, Wang Y, Nick P (2016) A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. J Exp Bot 67:5841–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Durango D, Pulgarin N, Echeverri F, Escobar G, Quiñones W (2013) Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules 18:10609–10628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu RY, Nana P, Yanga Y, Panb H, Zhoua T, Chen J (2011) Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-D-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao. Physiol Plantarum 142:265–273

    Article  CAS  Google Scholar 

  184. Armero J, Requejo R, Jorrín J, López-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 9:785–795

    Article  Google Scholar 

  185. Al-Tawaha AM, Seguin P, Smith DL, Beaulieu C (2005) Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Ann Appl Biol 146:303–310

    Article  Google Scholar 

  186. Boué S, Shih F, Shih B, Daigle K, Carter-Wientjes C, Cleveland T (2008) Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J Food Sci 73:H43–H49

    Article  PubMed  CAS  Google Scholar 

  187. Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kretzschmar FS, Aidar MPM, Salgado I, Braga MR (2009) Elevated CO2 atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitor. Environ Exper Bot 65:319–329

    Article  CAS  Google Scholar 

  189. Abbasi PA, Graham MY, Graham TL (2001) Effects of soybean genotype on the glyceollin elicitation competency of cotyledon tissues to Phytophthora sojae glucan elicitors. Physiol Mol Plant Path 59:95–105

    Article  CAS  Google Scholar 

  190. Ma M, Wang P, Yang R, Zhou T, Gu Z (2019) UV-B mediates isoflavone accumulation and oxidative-antioxidant system responses in germinating soybean. Food Chem 275:628–636

    Article  CAS  PubMed  Google Scholar 

  191. Lim YJ, Jeong HY, Gil CS, Kwon SJ, Na JK, Lee C, Eom SH (2020) Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chem 303:125376

    Article  CAS  PubMed  Google Scholar 

  192. Shimada N, Akashi T, Aoki T, Ayabe S-I (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: Molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    Article  CAS  PubMed  Google Scholar 

  193. Kaducová M, Monje-Rueda MD, García-Calderón M, Pérez-Delgado CM, Eliášová A, Gajdošová S, Petruľová V, Betti M, Márquez AJ, Paľove-Balang P (2019) Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. J Plant Physiol 236:88–95

    Article  PubMed  CAS  Google Scholar 

  194. Bednarek P, Kerhoas L, Einhorn J, Frański R, Wojtaszek P, Rybus-Zając M, Stobiecki M (2003) Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J Chem Ecol 29:1127–1142

    Article  CAS  PubMed  Google Scholar 

  195. Salles II, Blount JW, Dixon RA, Schubert K (2002) Phytoalexin induction and β-1,3-glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiol Mol Plant Path 61:89–101

    Article  CAS  Google Scholar 

  196. Jasiński M, Kachlicki P, Rodziewicz P, Figlerowicz M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47:847–853

    Article  PubMed  CAS  Google Scholar 

  197. Sivesind E, Seguin P (2006) Effects of foliar application of elicitors on red clover isoflavone content. J Agron Crop Sci 192:50–54

    Article  CAS  Google Scholar 

  198. Dufour MC, Lambert C, Bouscaut J, Mérillon JM, Corio-Costet MF (2013) Benzothiadiazole-primed defence responses and enhanced differential expression of defence genes in Vitis vinifera infected with biotrophic pathogens Erysiphe necator and Plasmopara viticola. Plant Pathol 62:370–382

    Article  CAS  Google Scholar 

  199. Bellée A, Cluzet S, Dufour MC, Mérillon JM, Corio-Costet MF (2018) Comparison of the impact of two molecules on plant defense and on efficacy against Botrytis cinerea in the vineyard: A plant defense inducer (Benzothiadiazole) and a fungicide (Pyrimethanil). J Agric Food Chem 66:3338–3350

    Article  PubMed  CAS  Google Scholar 

  200. Takayanagi T, Okuda T, Mine Y, Yokotsuka K (2004) Induction of resveratrol biosynthesis in skins of three grape cultivars by ultraviolet irradiation. J Japan Soc Hort Sci 73:193–199

    Article  CAS  Google Scholar 

  201. López-Nicolás JM, Bru R, Sánchez-Ferrer A, García-Carmona F (1995) Use of ‘soluble lipids’ for biochemical processes: linoleic acid-cyclodextrin inclusion complexes in aqueous solutions. Biochem J 308:151–154

    Article  PubMed  PubMed Central  Google Scholar 

  202. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    Article  CAS  PubMed  Google Scholar 

  203. Dobrowolski MP, Shearer BL, Colquhoun IJ, O’Brien PA, Hardy GESJ (2008) Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathol 57:928–936

    Article  CAS  Google Scholar 

  204. Massoud K, Barchietto T, Le Rudulier T, Pallandre L, Didierlaurent L, Garmier M, Ambard-Bretteville F, Seng JM, Saindrenan P (2012) Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol 159:286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dufour MC, Corio-Costet MF (2013) Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates. Eur J Plant Pathol 136:247–259

    Article  CAS  Google Scholar 

  206. Lovatt CJ, Mikkelsen RL (2006) Phosphite fertilizers: What are they? Can you use them? What can they do? Better Crops 90:1–13

    Google Scholar 

  207. Wong M-H, McComb JA, Hardy GESJ, O’Brien PA (2009) Phosphite induces expression of a putative proteophosphoglycan gene in Phytophthora cinnamomi. Australas Plant Pathol 38:235–241

    Article  CAS  Google Scholar 

  208. Daniel R, Wilson BA, Cahill DM (2005) Potassium phosphonate alters the defence response of Xanthorrhoea australis following infection by Phytophthora cinnamomi. Australas Plant Pathol 34:541–548

    Article  CAS  Google Scholar 

  209. Grant BR, Dunstan RH, Griffith JM, Niere JO, Smillie RH (1990) The mechanism of phosphonic (phosphorous) acid action in Phytophthora. Australas Plant Pathol 19:115–121

    Article  Google Scholar 

  210. Guest D, Grant B (1991) The complex action of phosphonates as antifungal agents. Biol Rev Camb Philos Soc 66:159–187

    Google Scholar 

  211. Burdziej A, Da Costa G, Gougeon L, Le Mao I, Béllée A, Corio-Costet MF, Mérillon JM, Richard T, Szakiel A, Cluzet S (2019) Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy. Metabolomics 15:67

    PubMed  Google Scholar 

  212. Ye H, Huang L-L, Chen S-D, Zhong J-J (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795

    CAS  PubMed  Google Scholar 

  213. Cai Z, Riedel H, Thaw Saw NM, Kütük O, Mewis I, Jäger H, Knorr D, Smetanska I (2010) Effects of Pulsed Electric Field on secondary metabolism of Vitis vinifera L. cv. Gamay Fréaux suspension culture and exudates. Appl Biochem Biotech 164:443–453

    Google Scholar 

  214. Gueven A, Knorr D (2011) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103:237–243

    CAS  Google Scholar 

  215. Domard A, Domard M (2002) Chitosan: structure – properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials. Marcel Dekker, New York

    Google Scholar 

  216. Rabea EI, Badawy MEI, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4:1457–1465

    CAS  PubMed  Google Scholar 

  217. Peniston QP, Johnson E (1980) Process for the manufacture of chitosan. US patent No.4. 195, 175, 5 pp. In: Walker R, Suzanne M, Phil B, Alistair G (eds) Evaluation of potential for chitosan to enhance plant defence. Rural Industries Research and Development Corporation, Kingston

    Google Scholar 

  218. Yin H, Zhao X, Du Y (2010) Oligochitosan: A plant diseases vaccine – a review. Carbohydr Polym 82:1–8

    CAS  Google Scholar 

  219. Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413

    CAS  Google Scholar 

  220. Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Steele Scott N (1998) Chitinase and ß-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust J Grape Wine Res 4:14–22

    CAS  Google Scholar 

  221. Gagnon H, Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry 44:1463–1467

    CAS  Google Scholar 

  222. Benhamou N, Lafontaine PJ, Nicole M (1994) Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84:1432–1444

    CAS  Google Scholar 

  223. Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Google Scholar 

  224. Zhang D, Quantick PC (1997) Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol Technol 12:195–202

    CAS  Google Scholar 

  225. Nisizawa K, Yamaguchi T, Handa N, Maeda M, Yamazaki H (1963) Chemical nature of a uronic acid-containing polysaccharide in the peritrophic membrane of the silkworm. J Biochem 54:419–426

    CAS  PubMed  Google Scholar 

  226. Nakamura K, Akashi T, Aoki T, Kawaguchi K, Ayabe S (1999) Induction of isoflavonoid and retrochalcone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci Biotechnol Biochem 63:1618–1620

    CAS  PubMed  Google Scholar 

  227. He X-Z, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in Alfalfa. Plant Cell 12:1689–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Luciano AJ, Irineo TP, Virginia OVR, Feregrino-Pérez AA, Hernández AC, Gerardo GGR (2017) Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: A review. Int J Agric Biol 19:391–402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Mérillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cluzet, S., Mérillon, JM., Ramawat, K.G. (2020). Specialized Metabolites and Plant Defence. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-51034-3_2

Download citation

Publish with us

Policies and ethics