Skip to main content

Design Parameters Influence on the Static Workspace and the Stiffness Range of a Tensegrity Mechanism

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2020 (ARK 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 15))

Included in the following conference series:

  • 881 Accesses

Abstract

This paper deals with the impact of the design parameters on the static workspace and the stiffness range of a planar 3-DoF tensegrity mechanism. The static model is established through the energetic approach and the stiffness is derived analytically along the 3-DoF of the mechanism. The design parameters considered here are the spring stiffness and the location of the mechanism attachment points to the base. Results on the impact of these parameters are finally analyzed. This analysis constitutes a first step towards the geometric optimization of tensegrity mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azadi, M., Behzadipour, S., Faulkner, G.: Variable stiffness spring using tensegrity prisms. J. Mech. Robot. ASME (2010). https://doi.org/10.1115/1.4001776

    Article  MATH  Google Scholar 

  2. Boehler, Q., Charpentier, I., Vedrines, M.S., Renaud, P.: Definition and computation of tensegrity mechanism workspace. J. Mech. Robot. (2015). https://doi.org/10.1115/1.4029809

    Article  Google Scholar 

  3. Boehler, Q., Zompas, A., Vedrines, M., Abdelaziz, S., Renaud, P., Poignet, P.: Experiments on a variable stiffness tensegrity mechanism for an MR-compatible needle holder. Comput./Robot Assist. Surg. (2015)

    Google Scholar 

  4. Bricault, I., Jauniaux, E., Zemiti, N., Fouard, C., Taillant, E., Dorandeu, F., Cinquin, P.: Light puncture robot for CT and MRI interventions. IEEE Eng. Med. Biol. Mag. 27 (2008). https://doi.org/10.1109/EMB.2007.910262

  5. Friesen, J., Pogue, A., Bewley, T., De Oliveira, M., Robert, S., Sunspiral, V.: Ductt: a tensegrity robot for exploring duct systems. In: IEEE International Conference on Robotics and Automation (ICRA) (2014). https://doi.org/10.1109/IROS.2016.7759811

  6. Fuller, B. (ed.): Synergetics, Explorations in the Geometry of Thinking. Collier Macmillan (1975)

    Google Scholar 

  7. Furet, M., Chablat, D., Fasquelle, B., Khanna, P., Chevallereau, C., Wenger, P.: Prototype of a tensegrity manipulator to mimic bird necks. In: 24ème Congrès Français de Mécanique. Brest, France (2019)

    Google Scholar 

  8. Furet, M., Wenger, P.: Kinetostatic analysis and actuation strategy of a planar tensegrity 2–x manipulator. J. Mech. Robot. (2019). https://doi.org/10.1115/1.4044209

    Article  Google Scholar 

  9. Gagliardini, L., Gouttefarde, M., Caro, S.: Determination of a dynamic feasible workspace for cable-driven parallel robots. In: Advances in Robot Kinematics 2016, Springer Proceedings in Advanced Robotics (2017)

    Google Scholar 

  10. Gouttefarde, M., Merlet, J.P., Daney, D.: Wrench-feasible workspace of parallel cable-driven mechanisms. In: IEEE International Conference on Robotics and Automation. Roma, Italy (2007). https://doi.org/10.1109/ROBOT.2007.363195

  11. Henrickson, J.V., Valaseky, J., Skelton, R.: Shape control of tensegrity structures. In: AIAA SPACE 2015 Conference and Exposition. Pasadena, USA (2015). https://doi.org/10.2514/6.2015-4502

  12. Ji, Z., Li, T., Lin, M.: Kinematics, singularity, and workspaces of a planar 4-bar tensegrity mechanism. J. Robot. (2014). https://doi.org/10.1155/2014/967251

    Article  Google Scholar 

  13. Jing, Y.Z., Ohsaki, M. (eds.): Tensegrity Structures Form, Stability and Symmetry. Springer, Heidelberg (2015). https://doi.org/10.1007/978-4-431-54813-3

  14. Lessardand, S., Castro, D., Asper, W., Chopra, S.D., Baltaxe-Admony, L., Teodorescu, M., SunSpiral, V., Agogino, A.: A bio-inspired tensegrity manipulator with multi-DOF, structurally compliant joints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5515–5520 (2016). https://doi.org/10.1109/IROS.2016.7759811

  15. Manríquez Padilla, C.G., Zavala Pérez, O.A., Pérez Soto, G.I., Rodríguez Reséndiz, J., Camarillo Gómez, K.A.: Form-finding analysis of a class 2 tensegrity robot. Appl. Sci. (2019). https://doi.org/10.3390/app9152948

    Article  Google Scholar 

  16. Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J. Robot. Syst. (1998). https://doi.org/10.1002/(SICI)1097-4563(199810)15:10(581::AID-ROB4)3.0.CO;2-P

  17. Skelton, R., Adhikari, R., Pinaud, J.P., Chan, W.: An introduction to the mechanics of tensegrity structures. In: Conference on Decision and Control. Florida, USA (2001). https://doi.org/10.1109/.2001.98086

  18. Wenger, P., Chablat, D.C.: Kinetostatic analysis and solution classification of a planar tensegrity mechanism. In: Computational Kinematics, pp. 422–431. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-60867-948

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Cruz-Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz-Martinez, G.M., Vilchis, JC.A., Gonzalez, A.V., Abdelaziz, S., Poignet, P. (2021). Design Parameters Influence on the Static Workspace and the Stiffness Range of a Tensegrity Mechanism. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-50975-0_3

Download citation

Publish with us

Policies and ethics