Skip to main content

Carotenoids in Aviculture

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Carotenoids are the most numerous and widespread group of pigments in nature. Today, the carotenoid family is known to include more than 1100 natural compounds. Carotenoids play important roles in aviculture, including egg yolk and skin pigmentation as well as supplements to improve breeder performance. Only xanthophylls with high efficacy of transfer from the feed to the egg yolk found their way on the commercial poultry feed market. In fact, in commercial egg production desired egg yolk colour intensity is achieved by using a combination of various (usually, yellow and red) dietary carotenoids. Furthermore, canthaxanthin is proven to be an effective feed additive for poultry breeder nutrition. Among many important biological functions of carotenoids, there participation in building an effective antioxidant defence network could be of vital importance. Indeed, biological value of direct AO activity of carotenoids associated with scavenging ROS is probably not very high. It seems likely that indirect effects of carotenoids on the antioxidant defences via upregulation of Nrf2 and downregulation of NF-κB are a driving force of their beneficial effect in avian species in general and in poultry production in particular. Carotenoid protective effects in chicken/avian embryonic development deserve more attention and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AO:

Antioxidant

Apo-EE:

β-apo-8′-caroitenoic acid ethyl ester

AX:

Astaxanthin

CoQ:

Coenzyme Q

CX:

Canthaxanthin

NF-κB:

Nuclear factor-kappa B

HO:

Heme oxygenase

HDL:

High density lipoproteins

LPL:

Lipoprotein lipase

MDA:

Malondialdehyde

Nrf2:

Nuclear factor-erythroid-2-related factor 2

SOD:

Superoxide Dismutase

TAC:

Total antioxidant capacity

YSM:

Yolk Sac Membrane

References

  • Annison, E. F. (1983). Lipid metabolism. In: B. M. Freeman (Ed.), Physiology and biochemistry of the domestic fowl (Vol. 4, pp. 165–174). London: Academic Press.

    Google Scholar 

  • Babin, A., Biard, C., & Moret, Y. (2010, August). Dietary supplementation with carotenoids improves immunity without increasing its cost in a crustacean. American Naturalist, 176(2), 234–241.

    Google Scholar 

  • Babin, A., Saciat, C., Teixeira, M., Troussard, J. P., Motreuil, S., Moreau, J., et al. (2015). Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences. Developmental and Comparative Immunology, 49, 278–281.

    CAS  PubMed  Google Scholar 

  • Bahonar, A., Saadatnia, M., Khorvash, F., Maracy, M., & Khosravi, A. (2017). Carotenoids as potential antioxidant agents in stroke prevention: A systematic review. International Journal of Preventive Medicine, 8, 70.

    PubMed  PubMed Central  Google Scholar 

  • Baker, R., & Günther, C. (2004). The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends in Food Science & Technology, 15, 484–488.

    CAS  Google Scholar 

  • Barros, M. P., Rodrigo, M. J., & Zacarias, L. (2018). Dietary carotenoid roles in redox homeostasis and human health. Journal of Agriculture and Food Chemistry, 66, 5733–5740.

    CAS  Google Scholar 

  • Barzegari, A., & Pavon-Djavid, G. (2014). Carotenoids as signaling molecules in cardiovascular biology. Bioimpacts, 4, 111–112.

    PubMed  PubMed Central  Google Scholar 

  • Bortolotti, G. R., Negro, J. J., Surai, P. F., & Prieto, P. (2003). Carotenoids in eggs and plasma of red-legged partridges: Effects of diet and reproductive output. Physiological and Biochemical Zoology, 76, 367–374.

    CAS  PubMed  Google Scholar 

  • Belyavin, C. G., & Marangos, A. G. (1989). Natural products for egg yolk pigmentation. In D. J. A. Cole & W. Haresign (Eds.) Recent advances in poultry nutrition (pp. 239–260). Butterworths.

    Google Scholar 

  • Ben-Dor, A., Steiner, M., Gheber, L., Danilenko, M., Dubi, N., Linnewiel, K., et al. (2005). Carotenoids activate the antioxidant response element transcription system. Molecular Cancer Therapeutics, 4, 177–186.

    CAS  PubMed  Google Scholar 

  • Bertrand, S., Alonso-Alvarez, C., Devevey, G., Faivre, B., Prost, J., & Sorci, G. (2006). Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia, 147, 576–584.

    PubMed  Google Scholar 

  • Biard, C., Surai, P. F., & Møller, A. P. (2007). An analysis of pre- and post-hatching maternal effects mediated by carotenoids in the blue tit. Journal of Evolutionary Biology, 20, 326–339.

    CAS  PubMed  Google Scholar 

  • Biard, C., Surai, P. F., & Møller, A. P. (2005). Effects of carotenoid availability during laying on reproduction in the blue tit. Oecologia, 144, 32–44.

    PubMed  Google Scholar 

  • Biard, C., Gil, D., Karadas, F., Saino, N., Spottiswoode, C. N., Surai, P. F., et al. (2009). Maternal effects mediated by antioxidants and the evolution of carotenoid-based signals in birds. American Naturalist, 174, 696–708.

    PubMed  Google Scholar 

  • Bieri, J. G., & Farrell, P. M. (1976). Vitamin E. Vitamins and Hormones, 34, 31–75.

    CAS  PubMed  Google Scholar 

  • Blount, J. D. (2004). Carotenoids and life-history evolution in animals. Archives of Biochemistry and Biophysics, 430, 10–15.

    CAS  PubMed  Google Scholar 

  • Blount, J. D., Houston, D. C., Surai, P. F., & Møller, A. P. (2004). Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proceedings: Biological Sciences, 271(Suppl. 3), S79–S81.

    CAS  Google Scholar 

  • Blount, J. D., Metcalfe, N. B., Birkhead, T. R., & Surai, P. F. (2003). Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science, 300, 125–127.

    CAS  PubMed  Google Scholar 

  • Blount, J. D., Surai, P. F., Nager, R. G., Houston, D. C., Møller, A. P., Trewby, M. L., et al. (2002). Carotenoids and egg quality in the lesser blackbacked gull Larus fuscus: A supplemental feeding study of maternal effects. Proceedings: Biological Sciences, 269, 29–36.

    CAS  Google Scholar 

  • Bohm, F., Edge, R., Land, E. J., McGarvey, D. J., & Truscott, T. G. (1997). Carotenoids enhance vitamin E antioxidant efficiency. Journal of the American Chemical Society, 119, 621–622.

    Google Scholar 

  • Boileau, T. W., Clinton, S. K., & Erdman, J. W., Jr. (2000). Tissue lycopene concentrations and isomer patterns are affected by androgen status and dietary lycopene concentration in male F344 rats. Journal of Nutrition, 130, 1613–1618.

    CAS  PubMed  Google Scholar 

  • Bolhassani, A., Khavari, A., & Bathaie, S. Z. (2014). Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochimica et Biophysica Acta, 1845, 20–30.

    CAS  PubMed  Google Scholar 

  • Bonilla, C. E. V., Rosa, A. P., Londero, A., Giacomini, C. B. S., Orso, C., Fernandes, M. O., et al. (2017). Effect of broiler breeders fed with corn or sorghum diet and canthaxanthin supplementation on production and reproductive performance. Poultry Science, 96, 1725–1734.

    CAS  PubMed  Google Scholar 

  • Bréque, C., Surai, P., & Brillard, J. P. (2003). Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro. Molecular Reproduction and Development, 66, 314–323.

    PubMed  Google Scholar 

  • Castaneda, M. P., Hirschler, E. M., & Sams, A. R. (2005). Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry Science, 84, 143–147.

    CAS  PubMed  Google Scholar 

  • Castenmiller, J. J., & West, C. (1998). Bioavailability and bioconversion of carotenoids. Annual Review of Nutrition, 18, 19–38.

    CAS  PubMed  Google Scholar 

  • Cervantes-Paz, B., Victoria-Campos, C. I., & Ornelas-Paz, Jde. J. (2016). Absorption of carotenoids and mechanisms involved in their health-related properties. Subcellular Biochemistry, 79, 415–454.

    Google Scholar 

  • Chang, J., Zhang, Y., Li, Y., Lu, K., Shen, Y., Guo, Y., et al. (2018). NrF2/ARE and NF-κB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell. Future Oncology, 14, 719–726.

    CAS  PubMed  Google Scholar 

  • Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. Journal of Nutrition, 134, 257–261.

    Google Scholar 

  • Cohn, W. (1997). Bioavailability of vitamin E. European Journal of Clinical Nutrition, 51, S80–S85.

    PubMed  Google Scholar 

  • Combs, G. F., Jr. (1996). Mechanisms of absorption, transport and tissue uptake of vitamin E. In M. B. Coelho (Ed.), Vitamin E in animal nutrition and management. A BASF reference manual (pp. 27–35).

    Google Scholar 

  • Costantini, D., & Møller, A. P. (2008). Carotenoids are minor antioxidants for birds. Functional Ecology, 22, 367–370.

    Google Scholar 

  • Coon, C. N., & Couch, J. R. (1976). Effect of storage and fatty acid esters on the utilization of xanthophyll from marigold meal by laying hens. Poultry Science, 55, 841–847.

    CAS  Google Scholar 

  • Damaziak, K., Marzec, A., Riedel, J., Szeliga, J., Koczywas, E., Cisneros, F., et al. (2018). Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poultry Science, 97, 4008–4019.

    CAS  PubMed  Google Scholar 

  • Deeming, D. C., & Pike, T. W. (2013). Embryonic growth and antioxidant provision in avian eggs. Biology Letters, 9, 20130757.

    PubMed  PubMed Central  Google Scholar 

  • De Flora, S., Bagnasco, M., & Vainio, H. (1999). Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models: Mechanistic issues. Mutagenesis, 14, 153–172.

    PubMed  Google Scholar 

  • Delgado-Vargas, F. (1997). Pigments of the flower cempxuchitl (Tagetes erecta). Physiochemical characterization, processing, and pigmenting efficiency. Ph.D. Dissertation, National Polytechnic Institute, Mexico City, Mexico.

    Google Scholar 

  • Dutta, S., Surapaneni, B. K., & Bansal, A. (2018). Marked inhibition of cellular proliferation in the normal human esophageal epithelial cells and human esophageal squamous cancer cells in culture by carotenoids: Role for prevention and early treatment of esophageal cancer. Asian Pacific Journal of Cancer Prevention, 19, 3251–3256.

    CAS  PubMed  Google Scholar 

  • Erdman, J. W., Jr., Bierer, T. L., & Gugger, E. T. (1993). Absorption and transport of carotenoids. Annals of the New York Academy of Sciences, 691, 76–85.

    CAS  PubMed  Google Scholar 

  • Ensminger, M. E. (1980). Poultry science. Animal agricultural series. IL, USA: The Interstate Printers and Publications.

    Google Scholar 

  • Ewen, J. G., Thorogood, R., Karadas, F., Pappas, A. C., & Surai, P. F. (2006). Influences of carotenoid supplementation on the integrated antioxidant system of a free-living endangered passerine, the hihi (Notiomystis cincta). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143, 149–154.

    Google Scholar 

  • Ewen, J. G., Thorogood, R., Brekke, P., Cassey, P., Karadas, F., & Armstrong, D. P. (2009). Maternally invested carotenoids compensate costly ectoparasitism in the hihi. Proceedings of the National Academy of Sciences of the United States of America, 106, 12798–12802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garamszegi, L. Z., Biard, C., Eens, M., Møller, A. P., Saino, N., & Surai, P. (2007). Maternal effects and the evolution of brain size in birds: Overlooked developmental constraints. Neuroscience and Biobehavioral Reviews, 31, 498–515.

    CAS  PubMed  Google Scholar 

  • George, D. B., Schneider, B. C., McGraw, K. J., & Ardia, D. R. (2017). Carotenoids buffer the acute phase response on fever, sickness behavior and rapid bill color change in zebra finches. Journal of Experimental Biology, 220, 2957–2964.

    PubMed  Google Scholar 

  • Gupta, P., Bhatia, N., Bansal, M. P., & Koul, A. (2016). Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma. World Journal of Hepatology, 8, 1222–1233.

    PubMed  PubMed Central  Google Scholar 

  • Hamilton, P. B. (1992). The use of high-performance liquid chromatography for studying pigmentation. Poultry Science, 71, 718–724.

    CAS  PubMed  Google Scholar 

  • Hamilton, P. B., Tirado, F. J., & Garcia-Hernandez, F. (1990). Deposition in egg yolks of carotenoids from saponified and unsaponified oleoresin of red pepper (Capsicum annuum) fed to laying hens. Poultry Science, 69, 462–470.

    CAS  Google Scholar 

  • Hencken, H. (1992). Chemical and physiological behavior of feed carotenoids and their effects on pigmentation. Poultry Science, 71, 711–717.

    CAS  PubMed  Google Scholar 

  • Hocking, P. M., & Bernard, R. (1997). Effects of dietary crude protein content and food intake on the production of semen in two lines of broiler breeder males. British Poultry Science, 38, 199–202.

    CAS  PubMed  Google Scholar 

  • Hollander, D. (1981). Intestinal absorption of vitamins A, E, D, and K. Journal of Laboratory and Clinical Medicine, 97, 449–462.

    CAS  PubMed  Google Scholar 

  • Hosseini-Vashan, S. J., Golian, A., & Yaghobfar, A. (2016). Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. International Journal of Biometeorology, 60, 1183–1192.

    CAS  PubMed  Google Scholar 

  • Hu, L., Chen, W., Tian, F., Yuan, C., Wang, H., & Yue, H. (2018). Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling. Biomedicine & Pharmacotherapy, 106, 1484–1489.

    CAS  Google Scholar 

  • Hudon, J. (1994). Biotechnological applications of research on animal pigmentation. Biotechnology Advances, 12, 49–69.

    CAS  PubMed  Google Scholar 

  • Hurwitz, S., Bar, A., Katz, M., Sklan, D., & Budowski, P. (1973). Absorption and secretion of fatty acids and bile acids in the intestine of the laying fowl. Journal of Nutrition, 103, 543–547.

    CAS  PubMed  Google Scholar 

  • Icel, E., Icel, A., Uçak, T., Karakurt, Y., Elpeze, B., Keskin Çimen, F., et al. (2019). The effects of lycopene on alloxan induced diabetic optic neuropathy. Cutaneous and Ocular Toxicology, 38, 88–92.

    CAS  PubMed  Google Scholar 

  • Johnson-Dahl, M. L., Zuidhof, M. J., & Korver, D. R. (2017). The effect of maternal canthaxanthin supplementation and hen age on breeder performance, early chick traits, and indices of innate immune function. Poultry Science, 96, 634–646.

    CAS  PubMed  Google Scholar 

  • Johnson, E. A., Lewis, M. J., & Grau, C. R. (1980). Pigmentation of egg yolks with astaxanthin from the yeast Phaffia rhodozyma. Poultry Science, 59, 1777–1782.

    CAS  Google Scholar 

  • Karadas, F., Pappas, A. C., Surai, P. F., & Speake, B. K. (2005a). Embryonic development within carotenoid-enriched eggs influences the post-hatch carotenoid status of the chicken. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 141, 244–251.

    Google Scholar 

  • Karadas, F., Wood, N. A., Surai, P. F., & Sparks, N. H. (2005b). Tissue-specific distribution of carotenoids and vitamin E in tissues of newly hatched chicks from various avian species. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140, 506–511.

    Google Scholar 

  • Karadas, F., Surai, P., Grammenidis, E., Sparks, N. H., & Acamovic, T. (2006a). Supplementation of the maternal diet with tomato powder and marigold extract: Effects on the antioxidant system of the developing quail. British Poultry Science, 47, 200–208.

    CAS  PubMed  Google Scholar 

  • Karadas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006b). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British Poultry Science, 47, 561–566.

    CAS  PubMed  Google Scholar 

  • Karnaukhov, V. N. (1990). Carotenoids: Recent progress, problems and prospects. Comparative Biochemistry and Physiology, 95B, 1–20.

    CAS  Google Scholar 

  • Kim, J. S., Lee, W. M., Rhee, H. C., & Kim, S. (2016). Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Chemico-Biological Interactions, 254, 146–155.

    CAS  PubMed  Google Scholar 

  • Kotake-Nara, E., & Nagao, A. (2011). Absorption and metabolism of xanthophylls. Marine Drugs, 9, 1024–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsos, E. A., Clifford, A. J., Calvert, C. C., & Klasing, K. C. (2003). Maternal carotenoid status modifies the incorporation of dietary carotenoids into immune tissues of growing chickens (Gallus gallus domesticus). Journal of Nutrition, 133, 1132–1138.

    CAS  PubMed  Google Scholar 

  • Krogdahl, A. (1985). Digestion and absorption of lipids in poultry. Journal of Nutrition, 115, 675–685.

    CAS  PubMed  Google Scholar 

  • Kuhn, R., & Brockman, H. (1932). Bestimmung von carotinoiden. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 206, 41–64.

    CAS  Google Scholar 

  • Leone, A., Zefferino, R., Longo, C., Leo, L., & Zacheo, G. (2010). Supercritical CO(2)-extracted tomato Oleoresins enhance gap junction intercellular communications and recover from mercury chloride inhibition in keratinocytes. Journal of Agriculture and Food Chemistry, 58, 4769–4778.

    CAS  Google Scholar 

  • Li, Y., Zhang, Y., Liu, X., Wang, M., Wang, P., Yang, J., et al. (2018a). Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. International Journal of Oncology, 52, 2119–2129.

    CAS  PubMed  Google Scholar 

  • Li, H., Huang, C., Zhu, J., Gao, K., Fang, J., & Li, H. (2018b). Lutein suppresses oxidative stress and inflammation by Nrf2 activation in an osteoporosis rat model. Medical Science Monitor, 24, 5071–5075.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Hong, P., & Zheng, X. (2019). β-carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. Animal Science Journal, 90, 140–148.

    CAS  PubMed  Google Scholar 

  • Lin, J., Xia, J., Zhao, H. S., Hou, R., Talukder, M., Yu, L., et al. (2018). Lycopene triggers Nrf2-AMPK cross talk to alleviate atrazine-induced nephrotoxicity in mice. Journal of Agriculture and Food Chemistry, 66, 12385–12394.

    CAS  Google Scholar 

  • Liu, C., Wang, R., Zhang, B., Hu, C., & Zhang, H. (2013). Protective effects of lycopene on oxidative stress, proliferation and autophagy in iron supplementation rats. Biological Research, 46, 189–200.

    PubMed  Google Scholar 

  • Livny, O., Kaplan, I., Reifen, R., Polak-Charcon, S., Madar, Z., & Schwartz, B. (2002). Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. Journal of Nutrition, 132, 3754–3759.

    CAS  PubMed  Google Scholar 

  • Maoka, T. (2009). Recent progress in structural studies of carotenoids in animals and plants. Archives of Biochemistry and Biophysics, 483, 191–195.

    CAS  PubMed  Google Scholar 

  • Marusich, W., DeRitter, E., & Bauernfeind, J. C. (1960). Evaluation of carotenoid pigments for coloring yolks. Poultry Science, 39, 1338–1345.

    Google Scholar 

  • Marusich, W. L., & Bauernfeind, J. C. (1981). Oxycarotenoids in poultry feeds. In J. C. Bauernfeind (Ed.), Carotenoids as colorants and vitamin A precursors (pp. 320–462). New York, London: Academic Press.

    Google Scholar 

  • McDevitt, T. M., Tchao, R., Harrison, E. H., & Morel, D. W. (2005). Carotenoids normally present in serum inhibit proliferation and induce differentiation of a human monocyte/macrophage cell line (U937). Journal of Nutrition, 135, 160–164.

    CAS  PubMed  Google Scholar 

  • Marri, V., & Richner, H. (2014). Yolk carotenoids increase fledging success in great tit nestlings. Oecologia, 176, 371–377.

    PubMed  Google Scholar 

  • Meriwether, L. S., Humphrey, B. D., Peterson, D. G., Klasing, K. C., & Koutsos, E. A. (2010). Lutein exposure, in ovo or in the diet, reduces parameters of inflammation in the liver and spleen laying-type chicks (Gallus gallus domesticus). Journal of Animal Physiololgy and Animal Nutrition, 94, e115–e122.

    CAS  Google Scholar 

  • McGraw, K. J., Adkins-Regan, E., & Parker, R. S. (2005). Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colourful songbird. Naturwissenschaften, 92, 375–380.

    CAS  PubMed  Google Scholar 

  • Middendorf, D. F., Childs, G. R., & Cravens, W. W. (1980). Variation in the biological availability of xanthophyll within and among genetic resouces. Poultry Science, 59, 1460–1470.

    CAS  PubMed  Google Scholar 

  • Milani, A., Basirnejad, M., Shahbazi, S., & Bolhassani, A. (2017). Carotenoids: Biochemistry, pharmacology and treatment. British Journal of Pharmacology, 174, 1290–1324.

    CAS  PubMed  Google Scholar 

  • Moller, A. P., Biard, C., Blount, J., Houston, D. C., Ninni, P., Saino, N., et al. (2000). Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability? Poultry and Avian Biology Reviews, 11, 137–159.

    Google Scholar 

  • Nagao, A. (2009). Absorption and function of dietary carotenoids. Forum of Nutrition, 61, 55–63.

    CAS  PubMed  Google Scholar 

  • Nagao, A. (2011). Absorption and metabolism of dietary carotenoids. Biofactors, 37, 83–87.

    CAS  PubMed  Google Scholar 

  • Nakaue, H. S., Kurnick, A. A., Hulett, B. J., & Reid, B. L. (1966). Effect of ethoxyquin on carotene stability and utilization. Poultry Science, 45, 478–483.

    CAS  Google Scholar 

  • Niu, T., Xuan, R., Jiang, L., Wu, W., Zhen, Z., Song, Y., et al. (2018). Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. Journal of Agriculture and Food Chemistry, 66, 1551–1559.

    CAS  Google Scholar 

  • Nys, Y. (2000). Dietary carotenoids and egg yolk coloration—A review. Archiv fur Geflugelkunde, 64, 45–54.

    CAS  Google Scholar 

  • Ong, A. S. H., & Tee, E. S. (1992). Natural sources of carotenoids from plants and oils. In L. Packer (Ed.), Methods in enzymology. Carotenoids: Part A. Chemistry, separation, quantitation and antioxidation (Vol. 213, pp. 142–167).

    Google Scholar 

  • Ornelas, A. (1997). Influence of the processing in the bruised and depigmented broiler carcass. In Proceedings of the 2nd Symposium on Mexican Processing and Poultry Product Quality, Mexico City, Mexico (pp. 56–72).

    Google Scholar 

  • Palozza, P., Calviello, G., Emilia De Leo, M., Serini, S., & Bartoli, G. M. (2000). Canthaxanthin supplementation alters antioxidant enzymes and iron concentration in liver of Balb/c mice. Journal of Nutrition, 130, 1303–1308.

    CAS  PubMed  Google Scholar 

  • Pena, M. M., Cuevas, A. C., & Gonzalez, E. A. (2004). Evaluation of three pigment levels of marigold petals (Tagetes erecta) on skin pigmentation of broiler chicken. Tecnica Pecuaria en Mexico, 42, 105–111.

    Google Scholar 

  • Perez-Vendrell, J., Hernandez, M., Llaurado, L., Schierle, J., & Brufau, J. (2001). Influence of source and ratio of xanthophylls pigments on broiler chicken pigmentation and performance. Poultry Science, 80, 320–326.

    CAS  PubMed  Google Scholar 

  • Perveen, R., Suleria, H. A., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—A comprehensive review. Critical Reviews in Food Science and Nutrition, 55, 919–929.

    CAS  PubMed  Google Scholar 

  • Pfander, H. (1992). Carotenoids: An overview. In L. Packer (Ed.), Methods in enzymology. Carotenoids: Part A. Chemistry, separation, quantitation and antioxidation (Vol. 213, pp. 3–13).

    Google Scholar 

  • Philip, T., Weber, C. W., & Berry, J. W. (1976). Utilization of lutein and lutein-fatty acid esters by laying hens. Journal of Food Science, 41, 23–25.

    CAS  Google Scholar 

  • Pinchasov, Y., David, G., & Zohari, S. (1992). Dietary supplementation with xanthophyll as an effective way of identifying low-producing broiler breeder hens. Poultry Science, 71, 1436–1441.

    CAS  PubMed  Google Scholar 

  • Quackenbush, F. W. (1970). Xanthophylls and carotenes in feeds and feed materials: collaborative study. Journal of Association of Analytical Chemistry, 53, 186–189.

    CAS  Google Scholar 

  • Reboul, E. (2013). Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients, 5, 3563–3581.

    PubMed  PubMed Central  Google Scholar 

  • Ren, Z. Z., Jiang, S. Z., Zeng, Q. F., Ding, X. M., Bai, S. P., Wang, J. P., et al. (2016a). Effects of dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on the antioxidant status and tibia quality of duck breeders and newly hatched ducklings. Poultry Science, 95, 2090–2096.

    CAS  PubMed  Google Scholar 

  • Ren, Z., Jiang, S., Zeng, Q., Ding, X., Bai, S., Wang, J., et al. (2016b). Effect of dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on the performance of duck breeders under two different vitamin regimens. Journal of Animal Science and Biotechnology, 7, 2.

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F., & Fernandes, E. (2018). Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120, 681–699.

    CAS  PubMed  Google Scholar 

  • Rice-Evans, C. A., Samson, J., Bramley, P. M., & Holloway, D. E. (1997). Why do we expect carotenoids to be antioxidants in vivo? Free Radical Research, 26, 381–398.

    CAS  PubMed  Google Scholar 

  • Robert, F., Panheleux-Le Bastard, M., Hamelin, C., & Boulard, C. (2008). Effect of canthaxanthin supplementation in the ROSS breeder diet on oxidative stress in chick. In Proceedings of the 16th European Symposium on Poultry Nutrition, France (pp. 731–734).

    Google Scholar 

  • Rosa, A. P., Scher, A., Sorbara, J. O., Boemo, L. S., Forgiarini, J., & Londero, A. (2012). Effects of canthaxanthin on the productive and reproductive performance of broiler breeders. Poultry Science, 91, 660–666.

    CAS  PubMed  Google Scholar 

  • Rosa, A. P., Bonilla, C. E., Londero, A., Giacomini, C. B., Orso, C., Fernandes, M. O., et al. (2017). Effect of broiler breeders fed with corn or sorghum and canthaxanthin on lipid peroxidation, fatty acid profile of hatching eggs, and offspring performance. Poultry Science, 96, 647–658.

    CAS  PubMed  Google Scholar 

  • Rühl, R., Sczech, R., Landes, N., Pfluger, P., Kluth, D., & Schweigert, F. J. (2004). Carotenoids and their metabolites are naturally occurring activators of gene expression via the pregnane X receptor. European Journal of Nutrition, 43, 336–343.

    PubMed  Google Scholar 

  • Sahin, K., Orhan, C., Akdemir, F., Tuzcu, M., Sahin, N., Yılmaz, I., et al. (2017). β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food and Chemical Toxicology, 107, 270–279.

    CAS  PubMed  Google Scholar 

  • Saino, N., Ferrari, R., Romano, M., Martinelli, R., & Møller, A. P. (2003). Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proceedings: Biological Sciences, 270, 2485–2489.

    Google Scholar 

  • Saito, F., & Kita, K. (2011). Maternal intake of astaxanthin improved hatchability of fertilized eggs stored at high temperature. Journal of Poultry Science, 1, 33–39.

    Google Scholar 

  • Schiedt, K., Leuenberger, F. J., Vecchi, M., & Glinz, E. (1985). Absorption, retention and metabolic transformations of carotenoids in rainbow trout, salmon and chicken. Pure and Applied Chemistry, 57, 685–692.

    CAS  Google Scholar 

  • Shi, L., Zhao, S., Chen, Q., Wu, Y., Zhang, J., & Li, N. (2018). Crocin inhibits RANKL-induced osteoclastogenesis by regulating JNK and NF-κB signaling pathways. Molecular Medicine Reports, 17, 7947–7951.

    CAS  PubMed  Google Scholar 

  • Sklan, D., Shachaf, B., Baron, J., & Hurwitz, S. (1978). Retrograde movement of digesta in the duodenum of the chick: Extent, frequency, and nutritional implications. Journal of Nutrition, 108, 1485–1490.

    CAS  PubMed  Google Scholar 

  • Speake, B. K., Surai, P. F., Noble, R. C., Beer, J. V., & Wood, N. (1999). Differences in egg lipid and antioxidant composition between wild and captive pheasants and geese. Comparative Biochemistry and Physiology, 124B, 101–107.

    CAS  Google Scholar 

  • Stahl, W., Ale-Agha, N., & Polidori, M. C. (2002). Non-antioxidant properties of carotenoids. Biological Chemistry, 383, 553–558.

    CAS  PubMed  Google Scholar 

  • Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107.

    CAS  PubMed  Google Scholar 

  • Stevens, L. (1996). Avian biochemistry and molecular biology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sun, B., Ma, J., Zhang, J., Su, L., Xie, Q., Gao, Y., et al. (2014). Lycopene reduces the negative effects induced by lipopolysaccharide in breeding hens. British Poultry Science, 55, 628–634.

    CAS  PubMed  Google Scholar 

  • Sung, Y. Y., & Kim, H. K. (2018). Crocin ameliorates atopic dermatitis symptoms by down regulation of Th2 response via blocking of NF-κB/STAT6 signaling pathways in mice. Nutrients, 10, 11.

    Google Scholar 

  • Surai, A. P., Surai, P. F., Steinberg, W., Wakeman, W. G., Speake, B. K., & Sparks, N. H. (2003). Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. British Poultry Science, 44, 612–619.

    CAS  PubMed  Google Scholar 

  • Surai, P. F. (1999). Vitamin E in avian reproduction. Poultry and Avian Biology Reviews, 10, 1–60.

    Google Scholar 

  • Surai, P. F. (2002). Natural antioxidants in avian nutrition and reproduction. Nottingham, UK: Nottingham University Press.

    Google Scholar 

  • Surai, P. F. (2012a). The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. World’s Poultry Science Journal, 68, 465–475.

    Google Scholar 

  • Surai, P. F. (2012b). The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 2. World’s Poultry Science Journal, 68, 717–726.

    Google Scholar 

  • Surai, P. F., & Sparks, N. H. C. (2001). Comparative evaluation of the effect of two maternal diets on fatty acids, vitamin E and carotenoids in the chicken embryo. British Poultry Science, 42, 252–259.

    CAS  PubMed  Google Scholar 

  • Surai, P. F., & Speake, B. K. (1998). Distribution of carotenoids from the yolk to the tissues of the chick embryo. Journal of Nutritional Biochemistry, 9, 645–651.

    CAS  Google Scholar 

  • Surai, P. F., Bortolotti, G. R., Fidgett, A., Blount, J., & Speake, B. K. (2001a). Effects of piscivory on the fatty acid profiles and antioxidants of avian yolk: Studies on eggs of the gannet, skua, pelican and cormorant. Journal of Zoology (London), 255, 305–312.

    Google Scholar 

  • Surai, P. F., Speake, B. K., & Sparks, N. H. C. (2001b). Carotenoids in avian nutrition and embryonic development. 2. Antioxidant properties and discrimination in embryonic tissues. Journal of Poultry Science, 38, 117–145.

    CAS  Google Scholar 

  • Surai, P. F., Speake, B. K., & Sparks, N. H. C. (2001c). Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. Journal of Poultry Science, 38, 1–27.

    CAS  Google Scholar 

  • Surai, P. F., Speake, B. K., Wood, N. A., Blount, J. D., Bortolotti, G. R., & Sparks, N. H. (2001d). Carotenoid discrimination by the avian embryo: A lesson from wild birds. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 128, 743–750.

    CAS  Google Scholar 

  • Surai, P. F., Fisinin, V. I., & Karadas, F. (2016). Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2, 1–11.

    PubMed  PubMed Central  Google Scholar 

  • Surai, P. F., Ionov, I., Kuchmistova, E., Noble, R. C., & Speake, B. K. (1998). The relationship between the levels of α-tocopherol and carotenoids in the maternal feed, yolk and neonatal tissues: Comparison between the chicken, turkey, duck and goose. Journal of the Science of Food and Agriculture, 76, 593–598.

    CAS  Google Scholar 

  • Surai, P. F., Noble, R. C., & Speake, B. K. (1996). Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochimica et Biophysica Acta, 1304, 1–10.

    CAS  PubMed  Google Scholar 

  • Takahashi, S., Waki, N., Mohri, S., Takahashi, H., Ara, T., Aizawa, K., et al. (2018). Apo-12’-lycopenal, a lycopene metabolite, promotes adipocyte differentiation via peroxisome proliferator-activated receptor gamma activation. Journal of Agricultural and Food Chemistry (in press). https://doi.org/10.1021/acs.jafc.8b04736.

  • Tarique, T. M., Yang, S., Mohsina, Z., Qiu, J., Yan, Z., Chen, G., et al. (2014). Identification of genes involved in regulatory mechanism of pigments in broiler chickens. Genetics and Molecular Research, 13, 7201–7216.

    CAS  PubMed  Google Scholar 

  • Tee, E.-S. (1992). Carotenoids and retinoids in human nutrition. Critical Reviews in Food Science and Nutrition, 31, 103–163.

    CAS  PubMed  Google Scholar 

  • Thurnham, D. I., & Northrop-Clewes, C. A. (1999). Optimal nutrition: Vitamin A and carotenoids. Proceedings of the Nutrition Society, 58, 449–457.

    CAS  PubMed  Google Scholar 

  • Toti, E., Chen, C. O., Palmery, M., Villaño Valencia, D., & Peluso, I. (2018). Non-provitamin A and provitamin A carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition? Oxidative Medicine and Cellular Longevity, 2018, 4637861.

    PubMed  PubMed Central  Google Scholar 

  • Traber, M. G. (1996). Biokinetics of vitamin E. In E. Cadenas & L. Packer (Eds.), Handbook of antioxidants (pp. 43–61). Marcel Dekker.

    Google Scholar 

  • Traber, M. G., Lane, J. C., Lagmay, N., & Kayden, H. J. (1992). Studies on the transfer of tocopherol between lipoproteins. Lipids, 27, 657–663.

    CAS  PubMed  Google Scholar 

  • Tyczkowski, J. K., & Hamilton, P. B. (1986a). Absorption, transport, and deposition in chickens of lutein diester, a carotenoid extracted from marigold (Tagetes erecta) petals. Poultry Science, 65, 1526–1531.

    CAS  PubMed  Google Scholar 

  • Tyczkowski, J. K., & Hamilton, P. B. (1986b). Evidence for differential absorption of zeacarotene, cryptoxanthin and lutein in young broiler chickens. Poultry Science, 65, 1137–1140.

    CAS  PubMed  Google Scholar 

  • Umar Faruk, M., Roos, F. F., & Cisneros-Gonzalez, F. (2018). A meta-analysis on the effect of canthaxanthin on egg production in brown egg layers. Poultry Science, 97, 84–87.

    CAS  PubMed  Google Scholar 

  • van het Hof, K. H., Tijburg, L. B., Pietrzik, K., & Weststrate, J. A. (1999). Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. British Journal of Nutrition, 82, 203–212.

    Google Scholar 

  • van Vliet, T. (1996). Absorption of β-carotene and other carotenoids in humans and animal models. European Journal of Clinical Nutrition, 50, S32–S37.

    PubMed  Google Scholar 

  • Walzem, R. L. (1996). Lipoproteins and the laying hen: Form follows function. Poultry and Avian Biology Reviews, 7, 31–64.

    Google Scholar 

  • Weaver, R. J., Wang, P., Hill, G. E., & Cobine, P. A. (2018). An in vivo test of the biologically relevant roles of carotenoids as antioxidants in animals. Journal of Experimental Biology, 221, Pt 15.

    Google Scholar 

  • Williams, A. W., Boileau, T. W. M., & Erdman, J. W., Jr. (1998). Factors influencing the uptake and absorption of carotenoids. Proceedings of the Society for Experimental Biology and Medicine, 218, 106–108.

    CAS  PubMed  Google Scholar 

  • Wójcik, M., Bobowiec, R., & Martelli, F. (2008). Effect of carotenoids on in vitro proliferation and differentiation of oval cells during neoplastic and non-neoplastic liver injuries in rats. Journal of Physiology and Pharmacology, 59, 203–213.

    PubMed  Google Scholar 

  • Xavier, A. A., & Pérez-Gálvez, A. (2016). Carotenoids as a source of antioxidants in the diet. Subcellular Biochemistry, 79, 359–375.

    CAS  PubMed  Google Scholar 

  • Xie, K., Ngo, S., Rong, J., & Sheppard, A. (2019). Modulation of mitochondrial respiration underpins neuronal differentiation enhanced by lutein. Neural Regeneration Research, 14, 87–99.

    PubMed  PubMed Central  Google Scholar 

  • Xie, X., Chen, Q., & Tao, J. (2018). Astaxanthin promotes Nrf2/ARE signaling to inhibit HG-induced renal fibrosis in GMCs. Marine Drugs, 16, 4.

    Google Scholar 

  • Xue, Y., Sun, C., Hao, Q., & Cheng, J. (2019). Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats. Naunyn Schmiedebergs Archives of Pharmacology, 392, 341–348.

    CAS  PubMed  Google Scholar 

  • Yabuzaki, J. (2017). Carotenoids database: Structures, chemical fingerprints and distribution among organisms. Database, 2017, bax004. https://doi.org/10.1093/database/bax004.

  • Yang, Y., Yang, I., Cao, M., Su, Z. Y., Wu, R., Guo, Y., et al. (2018). Fucoxanthin elicits epigenetic modifications, Nrf2 activation and blocking transformation in mouse skin JB6 P+ Cells. American Association of Pharmaceutical Scientists Journal, 20, 32.

    PubMed  Google Scholar 

  • Yu, M., Yan, W., & Beight, C. (2018). Lutein and zeaxanthin isomers protect against light-induced retinopathy via decreasing oxidative and endoplasmic reticulum stress in BALB/cJ mice. Nutrients, 10, 7.

    Google Scholar 

  • Zhang, X., Zhao, W. E., Hu, L., Zhao, L., & Huang, J. (2011a). Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Archives of Biochemistry and Biophysics, 512, 96–106.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Zhang, K. Y., Ding, X. M., Bai, S. P., Hernandez, J. M., Yao, B., et al. (2011b). Influence of canthaxanthin on broiler breeder reproduction, chick quality, and performance. Poultry Science, 90, 1516–1522.

    CAS  PubMed  Google Scholar 

  • Zhao, B., Ren, B., Guo, R., Zhang, W., Ma, S., Yao, Y., et al. (2017). Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food and Chemical Toxicology, 109, 505–516.

    CAS  PubMed  Google Scholar 

  • Zhedek, M. S., Surai, P. F., Gavrish, A. P., & Seriy, G. P. (1996). A method of feed production from plant material. Patent of Ukraine, N11435, A23K1/14.

    Google Scholar 

  • Zhu, X., Chen, Y., Chen, Q., Yang, H., & Xie, X. (2018). Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats. Journal of Diabetes Research, 2018, 6730315.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Peter F. Surai and Ivan I. Kochish are supported by a grant of the Government of Russian Federation (Contract No. 14.W03.31.0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Surai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surai, P.F., Kochish, I.I. (2020). Carotenoids in Aviculture. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_20

Download citation

Publish with us

Policies and ethics