Skip to main content

Microalgae-Based Processes for Pigments Production

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

The purpose of this chapter is to provide an overview of the microalgae-based processes for pigment production, especially astaxanthin, β-carotene, and C-phycocyanin. At first, chemistry and biochemistry will be described for a better understanding of pigment’s production in the microalgae cells, focusing on the factors influencing the synthesis. Besides this, the upstream and downstream processing operations involved in the production process of the pigments in question will be reviewed in their main aspects. Finally, the main production systems (raceways, extensive unmixed lagoons, and tubular photobioreactors) used in the production of carotenoids and phycocyanin will be presented and discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién Fernandes, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., & Masojídek, J. (2017). Photobioreactors for the production of microalgae. In C. Gonzalez-Fernandez & E. Muñoz (Eds), Microalgae-based biofuels and bioproducts (pp. 1–44).

    Google Scholar 

  • Acién Fernández, F. G., Fernández Sevilla, J. M., & Molina Grima, E. (2019). Costs analysis of microalgae production. In D. J. Lee, A. Pandey, J. -S. Chang, Y. Chisti, & C. Soccol (Eds), Biomass, biofuels, biochemicals (2nd ed., pp. 551–566).

    Google Scholar 

  • AstaReal. (2019). Our company. Retrieved August 28, 2019, from http://astarealusa.com/about-us/.

  • Ayalon, O. (2014). (Algatechnologies Ltd.): Astaxanthin derivatives for heat stress prevention and treatment. WO2014057493 A1.

    Google Scholar 

  • Barros, A., Pereira, H., Campos, J., Marques, A., Varela, J., & Silva, J. (2019). Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large-scale production of microalgae. Scientific Reports, 9, 13935–13942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belay, A. (2013). Biology and industrial production of Arthrospira (Spirulina). In A. Richmond & Q. Hu (Eds.), Handbook of microalgal culture: Applied phycology and biotechnology (pp. 339–358).

    Google Scholar 

  • Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: Two-phase growth for β-carotene production. Journal of Applied Phycology, 7(1), 65–68.

    CAS  Google Scholar 

  • Ben-Amotz, A., Katz, A., & Avron, M. (1982). Accumulation of carotene in halotolerant algae: Purification and characterization of carotene-rich globules from Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 18(4), 529–537.

    CAS  Google Scholar 

  • Ben-Amotz, A., Polle, J. E. W., & Subba Rao, D. V. (2009). The Alga Dunaliella: Biodiversity, physiology, genomics and biotechnology. NH: Science Publishers, Enfield.

    Google Scholar 

  • Bertrand, M. (2010). Carotenoid biosynthesis in diatoms. Photosynthesis Research, 106, 89–102.

    CAS  PubMed  Google Scholar 

  • Borowitzka, M. A. (1990). The mass culture of Dunaliella salina. In Technical Resource Papers. Regional Workshop on the Culture and Utilisation of Seaweeds 2. Regional Seafarming Development and Demonstration Project, FAO Network of Aquaculture Centres in Asia: Bangkok, Thailand, pp. 63–80.

    Google Scholar 

  • Borowitzka, L. J., Borowitzka, M. A., & Moulton, T. (1984). The mass culture of Dunaliella: From laboratory to pilot plant. Hydrobiologia, 116(117), 115–121.

    Google Scholar 

  • Borowitzka, M. (2018). Commercial-scale production of microalgae for bioproducts. In S. La Barre & S. S. Bates (Eds.), Blue biotechnology: Production and use of marine molecules (Vol. 1, pp. 33–65).

    Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialization. Journal of Applied Phycology, 25, 743–756.

    CAS  Google Scholar 

  • Brusca, S., Famoso, F., Lanzafame, R., Messina, M., & Wilson, J. (2017). A site selection model to identify optimal locations for microalgae biofuel production facilities in Sicily (Italy). International Journal of Applied Engineering Research, 12, 16058–16067.

    Google Scholar 

  • Bubrick, P. (1991). Production of astaxanthin from Haematococcus. Bioresource Technology, 38, 237–239.

    CAS  Google Scholar 

  • Cardoso, L. A., Karp, S. G., Vendruscolo, F., Kanno, K. Y., Zoz, L. I., & Carvalho, J. C. (2017). Biotechnological production of carotenoids and their applications in food and pharmaceutical products. In D. Cvetkovic & G. Nikolic (Eds.), Carotenoids (pp. 125).

    Google Scholar 

  • Chakdar, H., & Pabbi, S. (2016). Cyanobacterial phycobilins: Production, purification, and regulation. In S. Pratyoosh (Ed.), Frontier discoveries and innovations in interdisciplinary microbiology (pp. 45–69).

    Google Scholar 

  • Chang, J. S., Show, P. L., Ling, T. C., Chen, C. Y., Ho, S. H., Tan, C. H., Nagarajan, D., & Phong, W. N., 2017. Photobioreactors. In C. Larroche, M. Sanroman, G. Du, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls (pp. 313–352).

    Google Scholar 

  • Chaumont, D. (1993). Biotechnology of algal biomass production: A review of systems for outdoor mass culture. Journal of Applied Phycology, 5, 593–604.

    Google Scholar 

  • Chaumont, D., Thepenier, C., Gudin, C. (1988). Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum-From laboratory to pilot plant. In: T. Stadler, J. Morillon, M. C. Verdus, W. Karamanos, H. Morvan, & D. Christiaen (Eds.), Algal biotechnology (pp. 199–208).

    Google Scholar 

  • Chen, C.-Y., Chang, Y.-H., & Chang, H.-Y. (2016). Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production. Algal Research, 13, 264–270.

    Google Scholar 

  • Chisti, Y. (2012). Raceways-based production of algal crude oil. In: C. Posten & C. Walter (Eds.), Microalgal biotechnology: Potential and production (pp. 113–146).

    Google Scholar 

  • Córdova, P., Baeza, M., Cifuentes, V., & Alcaíno, J. (2018). Microbiological synthesis of carotenoids: Pathways and regulation. In L. Q. Zepka, E. Jaob-Lopes, & V. De Rosso (Eds.), Progress in carotenoid research (p. 63).

    Google Scholar 

  • Cyanotech. (2019). Astaxanthin process. Retrieved August 28, 2019, from  https://www.cyanotech.com/astaxanthin/astaxanthin-process/.

  • Czarnecki, O., & Grimm, B. (2012). Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 63, 1675–1687.

    CAS  PubMed  Google Scholar 

  • Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74, 1163–1174.

    CAS  PubMed  Google Scholar 

  • Delrue, F., Alaux, E., Moudjaoui, L., Gaignard, C., Fleury, G., Perilhou, A., et al. (2017). Optimization of Arthrospira platensis (Spirulina) growth: From laboratory scale to pilot scale. Fermentation, 3, 59.

    Google Scholar 

  • Deprá, M. C., dos Santos, A. M., Severo, I. A., Santos, A. B., Zepka, L. Q., & Jacob-Lopes, E. (2018). Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality? BioEnergy Research, 11(4), 727–747.

    Google Scholar 

  • Eriksen, N. T. (2008). Production of phycocyanin—A pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80, 1–14.

    CAS  PubMed  Google Scholar 

  • Fernandes, A. S., do Nascimento, T. C., Jacob-Lopes, E., De Rosso, V. V., & Zepka, L. Q. (2018). Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. Progress in Carotenoid Research (pp. 1–15).

    Google Scholar 

  • Fernandes, A. S., Pinheiro, P. N., Deprá, M. C., Jacob-Lopes, E., & Zepka, L. Q. (2017). Carotenoids: Biosynthesis, properties and Physiological Effects. In H. Leif & F. Ulrik (Eds.), Carotenoids in microalgae (pp. 19–38).

    Google Scholar 

  • Galarza, J. I., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O., & Henríquez, V. (2018). Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research, 31, 291–297.

    Google Scholar 

  • Gao, Z., Meng, C., Chen, Y. C., Ahmed, F., Mangott, A., Schenk, P. M., et al. (2015). Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. Journal of Applied Phycology, 27(5), 1853–1860.

    CAS  Google Scholar 

  • García-González, M., Moreno, J., Canavate, J., Anguis, V., Prieto, A., Manzano, C., et al. (2003). Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. Journal of Applied Phycology, 15, 177–184.

    Google Scholar 

  • García-López, D. A., Olguín, E. J., González-Portela, R. E., Sánchez-Galván, G., De Philippis, R., Lovitt, R. W., et al. (2020). A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. Bioresource Technology, 298, 122548.

    PubMed  Google Scholar 

  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34, 1396–1412.

    CAS  PubMed  Google Scholar 

  • Gudin, C., & Chaumont, D. (1983). Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In W. Palz & D. Pirrwitz (Eds.), Proceedings of the Workshop and E.C. Contractor’s Meeting in Capri. D. Reidel Publishing Co. (pp. 184–193).

    Google Scholar 

  • Han, D., Li, Y., & Hu, Q. (2013). Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae, 28, 131–147.

    CAS  Google Scholar 

  • Henríquez, V., Escobar, C., Galarza, J., & Gimpel, J. (2016). Carotenoids in microalgae. SubCellular Biochemistry, 79, 219–237.

    PubMed  Google Scholar 

  • Holdmann, C., Schmid-Staiger, U., & Hirth, T. (2019). Outdoor microalgae cultivation at different biomass concentrations—Assessment of different daily and seasonal light scenarios by modeling. Algal Research, 38, 101405–101414.

    Google Scholar 

  • Hu, I. C. (2019). Production of potential coproducts from microalgae. In A. Pandey, J. -C. Chang, C. R. Soccol, D. -J. Lee, & Y. Chisti (Eds.), Biofuels from Algae (2nd ed, pp. 345–358).

    Google Scholar 

  • Huang, J. J., Lin, S., Xu, W., & Cheung, P. C. K. (2017). Occurrence and biosynthesis of carotenoids in phytoplankton. Biotechnology Advances, 35, 597–618.

    CAS  PubMed  Google Scholar 

  • Inhoffen, H. H., Pommer, H., & Bohlmann, F. (1950). Synthesen in der Carotinoid-Reihe, XIV. Aufbau des β-Carotins. Liebigs Ann Chem, 569, 237–246.

    CAS  Google Scholar 

  • Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7.

    Google Scholar 

  • Jayappriyan, K. R., Rajkumar, R., Venkatakrishnan, V., Nagaraj, S., & Rengasamy, R. (2013). In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomedicine & Preventive Nutrition, 3, 99–105.

    Google Scholar 

  • Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Applied Microbiology and Biotechnology, 68, 237–241.

    CAS  PubMed  Google Scholar 

  • Karrer, P., & Eugster, C. H. (1950). Synthesis of carotenoids. Helvetica Chimica Acta, 33, 1172–1174.

    CAS  Google Scholar 

  • Khoo, K. S., Lee, S. Y., Ooi, C. W., Fu, X., Miao, X., Ling, T. C., et al. (2019). Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 288, 121606–121617.

    CAS  PubMed  Google Scholar 

  • Kotzen, B., Emerenciano, M. G. C., Moheimani, N., & Burnell, G. M. (2019). Aquaponics: Alternative types and approaches. In S. Goddek, A. Joyce, B. Kotzen, & G. Burnell (Eds.), Aquaponics food production systems (pp. 301–330).

    Google Scholar 

  • Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J. W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875–885.

    CAS  Google Scholar 

  • Li, Q., Zhang, L., & Liu, J. (2019). Comparative transcriptome analysis at seven time points during Haematococcus pluvialis motile cell growth and astaxanthin accumulation. Aquaculture, 503, 304–311.

    CAS  Google Scholar 

  • Ma, R., Thomas-Hall, S. R., Chua, E. T., Alsenani, F., Eltanahy, E., Netzel, M. E., et al. (2018a). Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different LED lighting conditions. Bioresource Technology, 250, 591–602.

    CAS  PubMed  Google Scholar 

  • Ma, R., Thomas-Hall, S. R., Chua, E. T., Eltanahy, E., Netzel, M. E., Netzel, G., et al. (2018b). Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. Algal Research, 35, 215–222.

    Google Scholar 

  • Maeda, Y., Yoshino, T., Matsunaga, T., Matsumoto, M., & Tanaka, T. (2018). Marine microalgae for production of biofuels and chemicals. Current Opinion in Biotechnology, 50, 111–120.

    CAS  PubMed  Google Scholar 

  • Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., & Jing, K. (2016). Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 109, 282–296.

    CAS  Google Scholar 

  • Margalith, P. Z. (1999). Production of ketocarotenoids by microalgae. Applied Microbiology and Biotechnology, 51, 431–438.

    CAS  PubMed  Google Scholar 

  • Maroneze, M. M., & Queiroz, M. I. (2018). Microalgal production systems with highlights of bioenergy production. In E. Jacob-Lopes, L. Q. Zepka, & M. I. Queiroz (Eds.), Energy from microalgae (pp. 5–34).

    Google Scholar 

  • Mehar, J., Shekh, A., Nethravathy, M. U., Sarada, R., Chauhan, V. S., & Mudliar, S. (2019). Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 Utilization, 33, 384–393.

    Google Scholar 

  • Milas, N. A., Davis, P., Belic, I., & Fles, D. A. (1950). Synthesis of β-carotene. Journal of the American Chemical Society, 72, 4844–4844.

    CAS  Google Scholar 

  • Mobin, S., & Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510–517.

    CAS  Google Scholar 

  • Moheimani, N. R., & Borowitzka, M. A. (2006). The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. Journal of Applied Phycology, 18, 703–712.

    Google Scholar 

  • Molina Grima, E. (2009). Algae biomass in Spain: A case study. First European Algae biomass association conference & general assembly. Italy: Florence.

    Google Scholar 

  • Molina, E., Fernández, J., Acién, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92, 113–131.

    CAS  PubMed  Google Scholar 

  • Mulders, K. J., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology, 50, 229–242.

    CAS  PubMed  Google Scholar 

  • Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production-A close look at the economics. Biotechnology Advances, 29, 24–27.

    CAS  PubMed  Google Scholar 

  • Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.

    CAS  Google Scholar 

  • Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.

    Google Scholar 

  • Oswald, W. J., & Golueke, C. G. (1968). Large scale production of microalgae. In R. I. Mateless & S. R. Tannenbaum (Eds.), Single cell protein (pp. 271–305).

    Google Scholar 

  • Ouada, H. B., & Ammar, J. (2017). U.S. Patent Application No. 15/505,935.

    Google Scholar 

  • Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37, 422–443.

    CAS  PubMed  Google Scholar 

  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., et al. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216–1226.

    CAS  PubMed  Google Scholar 

  • Paniagua-Michel, J., Olmos-Soto, J., & Ruiz, M. A. (2012). Pathways of carotenoid biosynthesis in bacteria and microalgae. In N. J. Totowa (Ed.), Microbial carotenoids from bacteria and microalgae (pp. 1–12).

    Google Scholar 

  • Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82, 189–198.

    CAS  Google Scholar 

  • Pirt, S. J., Lee, Y. K., Walach, M. R., Pirt, M. W., Balyuzi, H. H. M., & Bazin, M. J. (1983). A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. Journal of Chemical Technology and Biotechnology, 33, 35–58.

    Google Scholar 

  • Rahman, D. Y., Sarian, F. D., van Wijk, A., Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2016). Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant. Journal of Applied Phycology, 29, 1233–1239.

    PubMed  PubMed Central  Google Scholar 

  • Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74(3), 517–523.

    CAS  PubMed  Google Scholar 

  • Rajesh, K., Rohit, M. V., & Mohan, S. V. (2017). Microalgae-based carotenoids production. In R. P. Rastogi, D. Madamwar, & A. Pandey (Eds.), Algal green chemistry (pp. 139–147).

    Google Scholar 

  • Ramos, A. A., Polle, J., Tran, D., Cushman, J. C., Jin, E. S., & Varela, J. C. (2011). The unicellular green alga Dunaliella salina Teod. As a model for abiotic stress tolerance: genetic advances and future perspectives. Algae, 26, 3–20.

    CAS  Google Scholar 

  • Raposo, M., de Morais, A., & de Morais, R. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine drugs, 13, 5128–5155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro, B. D., Barreto, D. W., & Coelho, M. A. Z. (2011). Technological aspects of β-carotene production. Food and Bioprocess Technology, 4, 693–701.

    CAS  Google Scholar 

  • Riccio, & Lauritano. (2019). Microalgae with immunomodulatory activities. Marine Drugs, 18, 2–20.

    Google Scholar 

  • Richmond, A., Boussiba, A., Vonshak, A., & Kopel, R. (1993). A new tubular reactor for mass production of microalgae outdoors. Journal of Applied Phycology, 5, 327–332.

    Google Scholar 

  • Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., et al. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93.

    CAS  PubMed  Google Scholar 

  • Saha, S., & Murray, P. (2018). Exploitation of microalgae species for nutraceutical purposes: Cultivation aspects. Fermentation, 4, 46.

    Google Scholar 

  • Saini, D. K., Chakdar, H., Pabbi, S., & Shukla, P. (2019). Enhancing production of microalgal biopigments through metabolic and genetic engineering. Critical Reviews in Food Science and Nutrition, 60, 391–405.

    PubMed  Google Scholar 

  • Saini, D. K., Pabbi, S., & Shukla, P. (2018). Cyanobacterial pigments: Perspectives and biotechnological approaches. Food and Chemical Toxicology, 120, 616–624.

    CAS  PubMed  Google Scholar 

  • Sathasivam, R., & Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine drugs, 16, 26.

    PubMed Central  Google Scholar 

  • Schultz, H. (2016). AstaReal stands by assertion that its process yields highest quality astaxanthin. Retrieved August 28, 2019, from https://www.nutraingredients-usa.com/article/2016/11/17/astareal-stands-by-assertion-that-its-process-yields-highest-quality-astaxanthin.

  • Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 7, 531.

    PubMed  PubMed Central  Google Scholar 

  • Siqueira, S. F., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2018). Introductory chapter: Microalgae biotechnology. A brief introduction. In E. Jacob-Lopes, L. Q. Zepka, & M. I. Queiroz (Eds.), Microalgal biotechnology (p. 1).

    Google Scholar 

  • Solovchenko, A., & Chekanov, K. (2014). Production of carotenoids using microalgae cultivated in photobioreactors. In K. Y. Paek, H. N. Murthy, & J. J. Zhong (Eds.), Production of biomass and bioactive compounds using bioreactor technology (pp. 63–91).

    Google Scholar 

  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina-from growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171.

    CAS  Google Scholar 

  • Stanic-Vucinic, D., Minic, S., Nikolic, M. R., & Velickovic, T. C. (2018). Spirulina phycobiliproteins as food components and complements. In E. Jacob-Lopes, L. Queiroz Zepka, & M. I. Queiroz (Eds.), Microalgal biotechnology (pp. 129–149).

    Google Scholar 

  • Sui, Y., & Vlaeminck, S. E. (2020). Dunaliella microalgae for nutritional protein: An undervalued asset. Trends in Biotechnology, 38, 10–12.

    CAS  PubMed  Google Scholar 

  • Tamiya, H., Hase, E., Shibata, K., Mituya, A., Iwamura, T., Nihei, T., et al. (1953). Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature. In J. S. Burlew (Ed.), Algal Culture from Laboratory to Pilot Plant (pp. 204–232). Washington DC: Carnegie Institution of Washington.

    Google Scholar 

  • Torzillo, G., & Chini Zittelli, G. (2015). Tubular photobioreactors. In A. Prokop, R. K. Bajpai, & M. E. Zappi (Eds.), Algal biorefineries volume 2: Products and refinery design (pp. 187–212).

    Google Scholar 

  • Tredici, M. R., & Zittelli, G. C. (1998). Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnology and Bioengineering, 57, 187–197.

    CAS  PubMed  Google Scholar 

  • Trediti, M. R. (2004). Mass production of microalgae: Photobioreactors. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology (pp. 178–214).

    Google Scholar 

  • Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

    CAS  PubMed  Google Scholar 

  • Ugwu, C. U., Ogbonna, J. C., & Tanaka, H. (2002). Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Applied Microbiology and Biotechnology, 58, 600–607.

    CAS  PubMed  Google Scholar 

  • Varela, J., Pereira, H., Vila, M., & León, R. (2016). Production of carotenoids by microalgae: Achievements and challenges. Photosynthesis Research, 127(2), 285–286.

    CAS  PubMed  Google Scholar 

  • Vernès, L., Granvillain, P., Chemat, F., & Vian, M. (2015). Phycocyanin from Arthrospira platensis. Production, extraction and analysis. Current Biotechnology, 4, 1–11.

    Google Scholar 

  • Von Alvensleben, N., & Heimann, K. (2018). The potential of microalgae for biotechnology: A focus on carotenoids. Blue Biotechnology: Production and Use of Marine Molecules, 1, 117–142.

    Google Scholar 

  • Watanabe, Y., & Hall, D. O. (1996). Photosynthetic production of the filamentous cyanobacterium Spirulina platensis in a cone-shaped helical tubular photobioreactor. Applied Microbiology and Biotechnology, 44, 693–698.

    CAS  Google Scholar 

  • Ye, Z. W., Jiang, J. G., & Wu, G. H. (2008). Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects. Biotechnology Advances, 26(4), 352–360.

    CAS  PubMed  Google Scholar 

  • Yen, H. -W., Hu, I. -C., Chen, C. -Y., Nagarajan, D., & Chang, J. -S. (2019). Design of photobioreactors for algal cultivation. In A. Pandey (Ed.), Biofuels from Algae (pp. 225–256).

    Google Scholar 

  • Yuan, J.-P., Peng, J., Yin, K., & Wang, J.-H. (2011). Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition & Food Research, 55(1), 150–165.

    CAS  Google Scholar 

  • Zhou, W., Lu, Q., Han, P., & Li, J. (2020). Microalgae cultivation and photobioreactor design. Microalgae Cultivation for Biofuels Production, 31–50. http://doi.org/10.1016/b978-0-12-817536-1.00003-5.

  • Zitelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for biofuel production. In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for biofuels and energy (pp. 115–131).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Manzoni Maroneze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroneze, M.M., Dias, R.R., Severo, I.A., Queiroz, M.I. (2020). Microalgae-Based Processes for Pigments Production. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_11

Download citation

Publish with us

Policies and ethics