Skip to main content

Precipitation Characteristics and Changes

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

Precipitation over the Arctic region plays a significant role in the water and energy cycle that sustains the Arctic’s unique ecosystem. Although a cold climate with strong seasonality in temperature and moisture predominates, there is large spatial variation due to the heterogeneity of the landscape and atmospheric processes that control local weather and climate. Long-term historical synoptic records exist for some regions providing very valuable information on how precipitation has been changing, yet there are many challenges to overcome. Inconsistency in instrumentation and measurement techniques, undercatch due to weather conditions and precipitation types, uneven spatial and temporal distribution of station locations, and the reliability of remote sensing products all have to be considered. Research on Arctic precipitation is mostly focused on a specific continent or geographical or political region using very diverse perspectives and approaches. Here we draw from many of these and remote sensing to piece together studies that illustrate a broader picture of Arctic precipitation conditions and reveal emerging and/or diverging patterns of change. This chapter will (1) introduce existing and forthcoming sources of data and their corresponding challenges across the Arctic; (2) describe the distribution of precipitation characteristics including total amount, intensity, and frequency over major land areas and the oceans; and (3) demonstrate past changes and future predictions in these precipitation characteristics and their extremes. This will provide a fairly comprehensive knowledge repository and a strong foundation to promote and inspire future research development on precipitation over the Arctic region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(D9): 4257. https://doi.org/10.1029/2002JD002499

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorology 4:1147–1167

    Google Scholar 

  • Adler RF, Gu G, Huffman GJ (2012) Estimating climatological bias errors for the global precipitation climatology project (GPCP). J Appl Meteorol Climatol 51:84–99

    Google Scholar 

  • Adler RF, Gu G, Sapiano M, Wang J-J, Huffman GJ (2017) Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys 38:679–699

    Google Scholar 

  • Alexander LV, et al. (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005JD006290

  • Arctic Climate Impact Assessment (ACIA) (2005) Arctic climate impact assessment. Cambridge Univ. Press, New York, 1042 pp

    Google Scholar 

  • Barrow E, Maxwell B, Gachon P (2004) Climate variability and change in Canada; past, present and future. Meteorological Service of Canada Environment Canada, Toronto

    Google Scholar 

  • Behrangi A, Gardner A, Reager JT, Fisher JB, Yang D, Huffman GJ, Adler RF (2018) Using GRACE to estimate snowfall accumulation and assess gauge undercatch corrections in high latitudes. J Clim 31:8689–8704

    Google Scholar 

  • Behrangi A, Gardner AS, Reager JT, Fisher JB (2017) Using GRACE to constrain precipitation amount over cold mountainous basins. Geophys Res Lett 44:219–227

    Google Scholar 

  • Behrangi A et al (2016) Status of high-latitude precipitation estimates from observations and reanalyses. J Geophys Res: Atmos 121:4468–4486

    Google Scholar 

  • Behrangi A, Imam B, Hsu KL, Sorooshian S, Bellerby TJ, Huffman GJ (2010) REFAME: rain estimation using forward-adjusted advection of microwave estimates. J Hydrometeorology 11:1305–1321

    Google Scholar 

  • Behrangi A, Hsu K-I, Imam B, Sorooshian S, Huffman GJ, Kuligowski RJ (2009) PERSIANN-MSA: a precipitation estimation method from satellite-based multispectral analysis. J Hydrometeorology 10:1414–1429

    Google Scholar 

  • Behrangi A, Lebsock M, Wong S, Lambrigtsen BH (2012) On the quantification of oceanic rainfall using spaceborne sensors. J Geophys Res 117:D20105

    Google Scholar 

  • Behrangi A, Tian Y, Lambrigtsen BH, Stephens GL (2014a) What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour Res 50:4893–4905

    Google Scholar 

  • Behrangi A, Wong S, Mallick K, Fisher JB (2014b) On the net surface water exchange rate estimated from remote-sensing observation and reanalysis. Int J Remote Sens 2170–2185

    Google Scholar 

  • Berg W, L’Ecuyer T, Kummerow C (2006) Rainfall climate regimes: the relationship of regional TRMM rainfall biases to the environment. J Appl Meteorol Climatol 45:434–454

    Google Scholar 

  • Bieniek PA, Walsh JE, Thoman RL, Bhatt US (2014) Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J Clim 27(8):2800–2818. https://doi.org/10.1175/JCLI-D-13-00342.1

  • Bieniek PA, Walsh JE (2017) Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska. Int J Climatol 37:208–217

    Google Scholar 

  • Bintanja R, Selten FM (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509:479–482. https://doi.org/10.1038/nature13259

    Article  Google Scholar 

  • Boening C, Lebsock M, Landerer F, Stephens GL (2012) Snowfall-driven mass change on the East Antarctic ice sheet. Geophys Res Lett 39:L21501

    Google Scholar 

  • Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24:5721–5739

    Google Scholar 

  • Brettschneider B, Trypaluk C (2014) Reexamination of the Alaska 1-Day record rainfall. Bull Am Meteor Soc 95(8):1249–1256. https://doi.org/10.1175/BAMS-D-13-00027.1

    Article  Google Scholar 

  • Brown RD, Braaten RO (1998) Spatial and temporal variability of Canadian monthly snow depths, 1946–1995. Atmos Ocean 36(1):37–54. https://doi.org/10.1080/07055900.1998.9649605

    Article  Google Scholar 

  • Bulygina ON, Razuvaev VN (2012) Daily temperature and precipitation data for 518 Russian meteorological stations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Bush EJ, Loder JW, James TS, Mortsch LD, Cohen SJ (2014) An overview of Canada’s changing climate. In: Lemmen DS (ed) Warren FJ. Canada in a changing climate, Sector Perspectives on Impacts and Adaptation, pp 23–64

    Google Scholar 

  • Chamnansiri N (2016) Changes in precipitation characteristics associated with air temperature, dew point temperature and relative humidity over southeastern Canada during 1977–2015. MA thesis, California State University, Los Angeles. http://hdl.handle.net/10211.3/173880

  • Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility. In Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, 1029–1136

    Google Scholar 

  • Colony R, Randinov V, Tanis FR (1998) Measurements of precipitation and snow pack at Russian north pole drifting stations. Polar Record 34(188):3–14

    Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J Clim 23:333–351. https://doi.org/10.1175/2009JCLI3053.1

    Article  Google Scholar 

  • Dingman SL (2008) Physical hydrology, 2nd edn. Waveland Press, Long Grove, IL, p 646

    Google Scholar 

  • Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Trends in land–atmosphere interactions from CMIP5 simulations. J Hydrometeorology 14(3):829–849

    Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2017) Addendum: More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 7(2):154–158

    Google Scholar 

  • Draper DW, Newell DA, Wentz FJ, Krimchansky S, Skofronick-Jackson GM (2015) The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance. IEEE J Sel Top Appl Earth Obse Remote Sens 8(7):3452–3462

    Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17:294–304

    Google Scholar 

  • Ferraro RR et al (2013) An Evaluation of Microwave Land Surface Emissivities Over the Continental United States to Benefit GPM-Era Precipitation Algorithms. IEEE Trans Geosci Remote Sens 51:378–398

    Google Scholar 

  • Førland EJ, Hanssen-Bauer I (2003) Past and future climate variations in the Norwegian Arctic: overview and novel analysis. Polar Res 22(2):113–124. https://doi.org/10.1111/j.1751-8369.2003.tb00102.x

    Article  Google Scholar 

  • Fuchs T, Rapp J, Rubel F, Rudolf B (2001) Correction of synoptic precipitation observations due to systematic measuring errors with special regard to precipitation phases. Phys Chem Earth Part B 26:689–693

    Google Scholar 

  • Goodison BE, Louie PYT, Yang D (1998) WMO solid precipitation measurement intercomparison. Rept 67:212 pp. World Meteorological Organization, Geneva

    Google Scholar 

  • Goodison BE, Louie PYT, Yang D (1988) WMO solid precipitation measurement intercomparison, final report, WMO/TD-No. 872, WMO, Geneva, 212 pp

    Google Scholar 

  • Groisman PY, Rankova EY (2001) Precipitation trends over the Russian permafrost-free zone: removing the artfacts of pre-professing. Inter J Climatol 21:657–678

    Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR (2005) Trends in intense precipitation in climate record. J Climate 18:1326–1350

    Google Scholar 

  • Groisman PYa, Koknaeva VV, Belokrylova TA, Karl TR (1991) Overcoming biases of precipitation measurement: a history of the USSR experience. Bull Amer Meteor Soc 72:1725–1733. https://doi.org/10.1175/1520-0477(1991)072%3c1725:OBOPMA%3e2.0CO;2

  • Groisman PYa, Sun B, Vose RS, Lawrimore JH, Whitfield PH, Serreze MC, Razuvaev V, Alekseev G (2003) Contemporary Climate Changes in High Latitudes of the Northern Hemisphere: Daily Time Resolution. In Proceedings of the 14th symposium on global change and climate variations, 1–10. Long Beach, CA: American Meteorological Society

    Google Scholar 

  • Hsu KL, Gao XG, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190

    Google Scholar 

  • Huffman GJ et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorology 2:36–50

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Report of Working Group I of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • Jarujareet P (2016) Precipitation trends under a warming climate in British Columbia, Canada, from 1950–2010. MA Thesis, California State University, Los Angeles. http://hdl.handle.net/10211.3/173903

  • Kane DL, Stuefer SL (2013) Challenges of Precipitation Data Collection in Alaska. 19th International Northern Research Basins Symposium and Workshop Southcentral Alaska, USA—August 11–17, 2013

    Google Scholar 

  • Kattsov VM et al (2007) Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models. J of Hydrometeorology 8(3):571–589

    Google Scholar 

  • Kochendorfer J, Nitu R, Wolff M, Mekis E, et al. (2017) Errors and adjustments for single-Alter shielded and unshielded weighing gauge precipitation measurements from WMO-SPICE. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2016-684, in review

  • Kopec BG, eng X, Michel FA, Posmentier ES (2015) Influence of sea ice on Arctic precipitation. Proc Natl Acad Sci 113(1):46–51. https://doi.org/10.1073/pnas.150463133

  • Korzun VI (Editor-in-Chief) (1978) World water balance and water resources of the earth. Unesco Press, Paris, pp 663

    Google Scholar 

  • Krasting JP, Broccoli AJ, Dixon KW, Lanzante JR (2013) Future changes in northern hemisphere snowfall. J Clim 26(20):7813–7828

    Google Scholar 

  • Kuligowski RJ (2002) A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J Hydrometeorology 3:112–130

    Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The Tropical Rainfall Measuring Mission (TRMM) sensor package. J Atmo Oceanic Technol 15:809–817

    Google Scholar 

  • Kummerow CD, Randel D, Petkovic V (2016) Results from GPM GPROF V4 and improvements planned for V5, 8th IPWG and 5th IWSSM joint workshop bologna, 3–7 October, 2016. http://www.isac.cnr.it/~ipwg/meetings/bologna-2016/Bologna2016_Posters/P1-20_Kummerow.pdf

  • Kummerow CD, Randel DL, Kulie M, Wang N, Ferraro R, Munchak SJ, Petkovic V (2015) The evolution of the Goddard profiling algorithm to a fully parametric scheme. J Atmos Oceanic Technol 32:2265–2280

    Google Scholar 

  • Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621

    Google Scholar 

  • Lader R, Walsh JE, Bhatt US, Bieniek PA (2017) Projections of twenty-first-century climate extremes for Alaska via dynamical downscaling and quantile mapping. J Appl Meteor Climatol 56:2393–2409. https://doi.org/10.1175/JAMC-D-16-0415.1

    Article  Google Scholar 

  • Lau WK, Wu MHT, Kim KM (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169

    Google Scholar 

  • Lebsock MD, L’Ecuyer TS (2011) The retrieval of warm rain from CloudSat. J Geophys Res 116:D20209

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Internat J Climatol 10:111–127

    Google Scholar 

  • Legates DR (1995) Global and terrestrial precipitation: a comparative assessment of existing climatologies. Int J Climatol 15:237–258

    Google Scholar 

  • Liu G (2008) Deriving snow cloud characteristics from CloudSat observations. J Geophys Res 113:D00A09

    Google Scholar 

  • Lydolph PE (1977) Climates of the Soviet Union. World survey of climatology volume 7, Elsevier Scientific Publishing Company, Amstrerdam-Oxford-New York

    Google Scholar 

  • Mailhot A, Kingumbi A, Talbot G, Poulin A (2010) Future changes in intensity and seasonal pattern of occurrence of daily and multi-day annual maximum precipitation over Canada. J Hydrol 388(3):173–185

    Google Scholar 

  • Maslowski W, Cassano J, Gutowski W, Lettenmaier D (2011) Regional arctic climate system model (RACM) - development and selected results, geophysical research abstracts, 13, EGU2011-9648, 2011, EGU General Assembly

    Google Scholar 

  • Metcalfe JR, Routledge B, Devine K (1997) Rainfall measurement in Canada: changing observational methods and archive adjustment procedures. J. Clim 10:92–101

    Google Scholar 

  • McAfee S, Guentchev G, Eischeid J (2013) Reconciling precipitation trends in Alaska: 1. Station-based analyses. J Geophys Rese 118:7523–7542. https://doi.org/10.1002/jgrd.50572

    Article  Google Scholar 

  • McAfee S, Guentchev G, Eischeid J (2014) Reconciling precipitation trends in Alaska: 2. Gridded data analyses. J Geophys Res. https://doi.org/10.1002/2014jd022461

  • Mekis É (2005) Adjustments for trace measurements in Canada. In 15th conference on applied climatology, Savannah, Georgia, USA, June, J3.7 (pp 20–24)

    Google Scholar 

  • Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos.–Ocean, 49, 163–177, https://doi.org/10.1080/07055900.2011.583910

  • Mekis É, Brown R (2010) Derivation of an adjustment factor map for the estimation of the water equivalent of snowfall from ruler measurements in Canada. Atmos Ocean 48(4):284–293

    Google Scholar 

  • Mekis E, Vincent LA (2011b) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos Ocean 49:163–177

    Google Scholar 

  • Mladjic B, Sushama L, Khaliq MN, Laprise R, Caya D, Roy R (2011) Canadian RCM projected changes to extreme precipitation characteristics over Canada. J Clim 24(10):2565–2584

    Google Scholar 

  • Montenegro F (2015) A look into changes in precipitation types linked with surface air temperature over British Columbia, Canada 1953–2005. MA thesis, California State University, Los Angeles. http://hdl.handle.net/10211.3/133589

  • Pendergrass AG, Lehner F, Sanderson BM, Xu Y (2015) Does extreme precipitation intensity depend on the emissions scenario? Geophys Res Lett 42:8767–8774

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen –Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Google Scholar 

  • Perica S, Kane D, Dietz S, Maitaria K, Martin D, Pavlovic S, Roy I (2012) NOAA Atlas 14: Precipitation- frequency atlas of the United States, Alaska. www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume7.pdf

  • Ponce M (2017) Detecting climate change over Canadian prairies. MA thesis at California State University, Los Angeles http://hdl.handle.net/10211.3/192086

  • Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30:307–319. https://doi.org/10.1007/s00382-007-0289-y

    Article  Google Scholar 

  • Rapaić M, Brown R, Markovic M, Chaumont D (2015) An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmos Ocean 53(3):283–303

    Google Scholar 

  • Rasmussen R, Baker B, Kochendorfer J (2012) How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull Amer Mete Soc 93:811–829

    Google Scholar 

  • Rawlins MA, Fahnestock M, Frolking S, Vörösmarty CJ (2007) On the evaluation of snow water equivalent estimates over the terrestrial Arctic drainage basin. Hydrol Process 21:1616–1623

    Google Scholar 

  • Rawlins MA et al (2010) Analysis of the arctic system for freshwater cycle intensification: Observations and expectations. J Clim 23:5715–5737

    Google Scholar 

  • Scaff L, Yang D, Li Y, Mekis E (2015) Inconsistency in precipitation measurements across the Alaska-Yukon border. The Cryosphere 9:2417–2428

    Google Scholar 

  • Schneider U, Finger P, Meyer-Christoffer A, Rustemeier E, Ziese M, Becker A (2017) Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the global precipitation climatology centre (GPCC). Atmosphere 8:52

    Google Scholar 

  • Serreze MC, Etringer AJ (2003) Precipitation charactersitics of the Eurasian Arctic Drainage system. Inter J Climatol 23:1267–1291

    Google Scholar 

  • Serreze MC, Hurst CM (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Clim 13:182–201

    Google Scholar 

  • Shephard MW, Mekis E, Morris RJ, Feng Y, Zhang X, Kilcup K, Fleetwood R (2014) Trends in canadian short-duration extreme rainfall: including an intensity–duration–frequency perspective. Atmos Ocean 52(5):398–417

    Google Scholar 

  • Short DA, Nakamura K (2000) TRMM radar observations of shallow precipitation over the tropical oceans. J Clim 13:4107–4124

    Google Scholar 

  • Shulski M, Wendler G2 (2007) Climate of Alaska. University of Alaska Press

    Google Scholar 

  • Skofronick-Jackson G et al (2017) The global precipitation measurement (GPM) mission for science and society. Bull Am Meteor Soc 98:1679–1695

    Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308:1429

    Google Scholar 

  • Solomon S et al (2007) Technical summary, in climate change 2007: the physical science basis. In: S. Solomon et al (ed) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK, pp 20–91

    Google Scholar 

  • Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteor Soc 81:2035–2046

    Google Scholar 

  • Stephens GL et al (2008) CloudSat mission: performance and early science after the first year of operation. J Geophys Res: Atmos 113:D00A18

    Google Scholar 

  • Stuefer SL, Kane DL (2016) Snow retention for increased water supply of shallow arctic lakes. Cold Reg Sci Technol 123(March):32–43. https://doi.org/10.1016/j.coldregions.2015.11.011

    Article  Google Scholar 

  • Stuefer SL, Kane DL, Liston GE (2013) In situ snow water equivalent observations in the US arctic. Hydrol Res 44(1):21. https://doi.org/10.2166/nh.2012.177

    Article  Google Scholar 

  • Stuefer SL, Arp C, Kane DL, Liljedahl A (2017) Recent extreme runoff observations from coastal Arctic watersheds in Alaska. Water Resour Res 53(11):9145–9163

    Google Scholar 

  • Sturm M, Stuefer SL (2013) Wind-blown flux rates derived from drifts at arctic snow fences. J Glaciol 213(59):21–34. https://doi.org/10.3189/2013JoG12J110

    Article  Google Scholar 

  • Swenson S (2010) Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. J Hydrometeorology 11:405–420

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505

    Google Scholar 

  • Tebaldi C, Arblaster JM, Hayhoe K, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211. https://doi.org/10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • USGCRP (2014) US national climate assessment, 2014: global climate change impacts in the United States. US.Global Change Research Program, Washington, DC. http://nca2014.globalchange.gov/downloads

  • Vincent LA, Mekis E (2009) Discontinuities due to joining precipitation station observations in Canada. J Appl Meteorol Climatol 48(1):156–166

    Google Scholar 

  • Vincent LA, Zhang X, Brown RD, Feng Y, Mekis E, Milewska EJ, Wan H, Wang XL (2015) Observed trends in Canada’s climate and influence of low-frequency variability modes. J Clim 28(11):4545–4560

    Google Scholar 

  • Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos Ocean 44(2):177–193

    Google Scholar 

  • Vincent LA, Wang XL, Milewska EJ, Wan H,Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res: Atmos 117(D18). https://doi.org/10.1029/2012jd017859

  • Walsh JE, Kattsov V, Portis D, Meleshko V (1988) Arctic precipitation and evaporation: model results and observational estimates. J. Clim 11(1):72–87

    Google Scholar 

  • Walsh JE, Kattsov V, Portis D, Meleshko V (1998) Arctic precipitation and evaporation: model results and observational estimates. J Clim 11:72–87

    Google Scholar 

  • Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FWCJB (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res: Solid Earth 120:2648–2671

    Google Scholar 

  • Wilheit TT (1986) Some comments on passive microwave measurement of rain. Bull Am Meteor Soc 67:1226–1232

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-Year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Google Scholar 

  • Yang D et al (2001) Compatibility evaluation of national precipitation gage measurements. J Geophys Res: Atmos 106:1481–1491

    Google Scholar 

  • Yang D, Goodison BE, Metcalfe JR, Golubev VS, Elomaa E, Gunther TH, Bates R, Pangburn TC, Hanson L, Emerson D, Copaciu V, Milkovic J (1995) Accuracy of Tretyakov precipitation gauge: results of WMO Intercomparison. Hydrol Process 9(8):877–895

    Google Scholar 

  • Yang D (1999) An improved precipitation climatology for the arctic ocean. Geophys Res Lett 26(11):1625–1628

    Google Scholar 

  • Yang D, Kane D, Zhang Z (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32:L19501. https://doi.org/10.1029/2005GL024057

    Article  Google Scholar 

  • Yang D, Goodison BE, Metcalfe JR, Golubev VS, Bates R, Pangburn T, Hanson CL (1998) Accuracy of NWS 8″ standard nonrecording precipitation gauge: results and application of WMO intercomparison. J Atmos Oceanic Technol 15(1):54–68

    Google Scholar 

  • Ye H, Cohen J (2013) Shortening snowfall season associated with increasing air temperature over northern Eurasia. Environ ResLett 8(2013)014052. http://stacks.iop.org/1748-9326/8/014052

  • Ye H (2001) Characteristics of winter precipitation variation over Northern Central Eurasia and their connections to sea surface temperatures over the Atlantic and Pacific oceans. J Clim 14:3140–3155

    Google Scholar 

  • Ye H (2008) Changes in frequency of precipitation types associated with surface air temperature over Northern Eurasia during 1936-90. J Clim 21:5807–5819. https://doi.org/10.1002/joc.1741

    Article  Google Scholar 

  • Ye H, Fetzer EJ (2010) Atmospheric moisture content associated with surface air temperatures during northern Eurasian summer. Int J Climatol 30(10):1463–1471. https://doi.org/10.1002/joc.1991

    Article  Google Scholar 

  • Ye H, Fetzer EJ, Wong S, Behrangi A, Olsen ET, Cohen J, Lambrigtsen BH, Chen L (2014) Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys Res Lett 41:2941–2947. https://doi.org/10.1002/2014GL,059830

    Article  Google Scholar 

  • Ye H, Fetzer EJ, Wong S, Yang D, Lambrigtsen BH (2015) Increasing atmospheric water vapor and higher daily precipitation intensity over Northern Eurasia. Geophys Res Lett 42 https://doi.org/10.1002/2015GL066104

  • Ye H, Fetzer EJ, Behrangi A, Wong S, Lambrigtsen BH, Wang CY, Cohen J, Gamelin BL (2016a) Increasing daily precipitation intensity associated with warmer air temperatures over Northern Eurasia. J Clim 29:623–636

    Google Scholar 

  • Ye H, Fetzer EJ, Wong S, Lambrigtsen BH, Wong T, Chen L, Dang V (2016b) More frequent showers and thunderstorm events under a warming climate: evidence observed over Northern Eurasia from 1966–2000. Clim Dyn, 13 pp. https://doi.org/10.1007/s00382-016-3412-0

  • Ye H, Fetzer EJ, Wong S, Lambrigtsen BH (2017) Rapid decadal convective precipitation increase during the last three decades of the 20th century. Sci Adv 3:1600944

    Google Scholar 

  • Zhang X, Harvey KD, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow. Water Resour Res 37:987–998 https://doi.org/10.1029/2000WR900357

  • Zhang X, Zwiers FW, Li G, Wan H, Cannon AJ (2017). Complexity in estimating past and future extreme short-duration rainfall. Nat Geosci 10(4):255–259

    Google Scholar 

  • Zolina, O, Simmer C, Gulev SK, Kollet S (2010) Changing structure of European precipitation: longer wet periods leading to more abundant rainfalls. Geophys Res Letts 37:L06704. https://doi.org/10.1029/2010GL042468

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengchun Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ye, H. et al. (2021). Precipitation Characteristics and Changes. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_2

Download citation

Publish with us

Policies and ethics