Skip to main content

Greenhouse Gases and Energy Fluxes at Permafrost Zone

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

Energy, water, and greenhouse gas exchange in the permafrost zone play an important role in the regional and global climate system at multiple temporal and spatial scales. High-latitude warming in recent years has substantially altered ecosystem function, including biosphere–atmosphere interaction, which may amplify or dampen future high-latitude warming through a variety of feedback processes. In this chapter, we have reviewed the current state of energy, water, CO2, and CH4 exchange at the northern high-latitude permafrost zone, with synthesizing observed micrometeorological fluxes. Tundra has a higher summer and winter albedo with a longer snow period than boreal forests, resulting in that tundra less transfers sensible and latent energy to the atmosphere. Growing season length determines the spatial variability of the annual gross primary productivity and net growing season CO2 sink. In contrast, interannual variabilities of the annual CO2 budget at boreal forests are determined by ecosystem respiration, indicating an importance of ecosystem respiration in the boreal forests. The CO2 fertilization effect could be an important determinant of the long-term greenhouse gas budget at sites with a near neutral CO2 budget. In terms of annual greenhouse gas budget, CH4 emission is more important than CO2 budget for both boreal forest and Arctic wet tundra. Based on this synthesis, finally, we discuss future possible directions of study to reach a better understanding of changing high-latitude ecosystems, by synthesizing tower flux measurements in Alaska and Siberia and combining these in situ measurements with remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic Summary for Policy-makers. Arctic Council, Oslo, p 19

    Google Scholar 

  • Amiro BD et al (2006) The effects of post-fire stand age on the boreal forest energy balance. Agric For Meteorl 140:41–50

    Article  Google Scholar 

  • Amiro BD et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115:G00K92. https://doi.org/10.1029/2010jg001390

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian J Bot 56:1–26

    Article  Google Scholar 

  • Ball J, Woodrow I, Berry J (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Martinus Nijhoff Publishers, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Belshe EF, Schuur EAG, Bolker BM (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16:1307–1315

    Article  Google Scholar 

  • Beringer J, Chapin FS III, Copass C (2003) Climate and flux data from alaska sites, 1998–2000, ARCSS Data Archive. Natl Cent Atmos Res Boulder Colo

    Google Scholar 

  • Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131:143–161

    Article  Google Scholar 

  • Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob Change Biol 14:1854–1876. https://doi.org/10.1111/j.1365-2486.2008.01606.x

    Article  Google Scholar 

  • Chambers SD, Chapin FS III (2003) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. J Geophys Res 108:8145. https://doi.org/10.1029/2001JD000530

    Article  Google Scholar 

  • Chang RY-W et al (2014) Methane emissions from Alaska in 2012 from CARVE airborn observations. Proc Natl Acad Sci USA 111:16694–16699. https://doi.org/10.1073/pnas.1412953111

  • Chapin FS III et al (2005) Role of land-surface changes in arctic summer warming. Science 310:657–660

    Article  Google Scholar 

  • Chapin FS III, Eugster W, McFadden JP, Lynch AH, Walker DA (2000) Summer differences among arctic ecosystems in regional climate forcing. J Climate 13:2002–2010

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Commane R et al (2017) Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc Natl Acad Sci 114:5361–5366

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK, p 189

    Google Scholar 

  • Derksen C, Brown R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett 29:L19504. https://doi.org/10.1029/2012GL052287

    Article  Google Scholar 

  • Engstrom R, Hope A, Kwon H, Harazono Y, Mano M, Oechel W (2006) Modeling evapotranspiration in Arctic coastal plain ecosystems using a modified BIOME-BGC model. J Geophys Res Biogeosci 111:G02021. https://doi.org/10.1029/2005JG000102

    Article  Google Scholar 

  • Euskirchen ES, Bennett AL, Breen AL, Genet H, Lindgren T, Kukowski AD, McGuire AD, Tupp TS (2016) Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environ Res Lett 11:105003. https://doi.org/10.1088/1748-9326/11/10/105003

    Article  Google Scholar 

  • Euskirchen ES, Bret-Harte MS, Scorr GJ, Edgar C, Shaver GR (2012) Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3(1):1–19. https://doi.org/10.1890/ES11-00202.1

    Article  Google Scholar 

  • Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE (2017a) Long-term release of carbon dioxide from Arctic tundra ecosystems in Alaska. Ecosystems 20:960–974. https://doi.org/10.1007/s10021-016-0085-9

    Article  Google Scholar 

  • Euskirchen ES, Edgar CW, Bret-Harte MS, Kade A, Zimov N, Zimov S (2017b) Interannual and seasonal patterns of carbon dioxide, water and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in northeastern Siberia. J Geophys Res Biogeosci 122:2651–2668. https://doi.org/10.1002/2017JG004070

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Chapin FS III (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Change Biol 13:2425–2438. https://doi.org/10.1111/j.1365-2486.2006.01113.x

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Chapin FS III, Rupp TS (2010) The changing effects of Alaska’s boreal forests on the climate system. Can J For Res 40:1336–1346

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Change Biol 12:731–750. https://doi.org/10.1111/gcb.12071

    Article  Google Scholar 

  • Euskirchen ES, Edgar CW, Turetsky MR, Waldrop MP, Harden JW (2014) Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J Geophys Res Biogeosci 119. https://doi.org/10.1002/2014jg002683

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthesis CO2 assimilation in leavers of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M (2016) Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351:696–699

    Article  Google Scholar 

  • Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2010) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol 17:855–871. https://doi.org/10.1111/j.1365-2486.2010.02274.x

    Article  Google Scholar 

  • Graven HD et al (2013) Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341(6150):1085–1089

    Article  Google Scholar 

  • Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behavior of pine and larch forests in eastern Siberia. Hydrol Process 18:23–39

    Article  Google Scholar 

  • Harazono Y, Mano M, Miyata A, Yoshimoto M, Zulueta RC, Vourlitis V, Kwon H, Oechel W (2006) Temporal and spatial differences of methane flux at arctic tundra in Alaska. Mem Natl Inst Polar Res Spec Issue 59:79–95

    Google Scholar 

  • Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus 55B:215–231

    Article  Google Scholar 

  • Harazono Y, Yoshimoto M, Mano M Vourlitis V, Oechel W (1998) Characteristics of energy and water budgets over wet sedge and tussock tundra ecosystems at North Slope in Alaska. Hydrol Proc 12:2163–2183

    Google Scholar 

  • Helbig M et al (2016b) Addressing a systematic bias in carbon dioxide flux measurements with the EC150 and the IRGASON open-path gas analyzers. Agric For Meteorol 228–229:349–359

    Article  Google Scholar 

  • Helbig M, Chasmer LE, Kljun N, Quinton WL, Treat CC, Sonnentag O (2017) The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Glob Change Biol 23:2413–2427. https://doi.org/10.1111/gcb.13520

    Article  Google Scholar 

  • Helbig M, Wischnewski K, Kljun N, Chasmer LE, Quinton WL, Detto M, Sonnentag O (2016a) Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob Change Biol 22:4048–4066. https://doi.org/10.1111/gcb.13348

    Article  Google Scholar 

  • Hicks Pries CE, van Logtestijn RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biol 21:4508–4519

    Article  Google Scholar 

  • Hinzman LD et al (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298. https://doi.org/10.1007/s10584-005-5352-2

    Article  Google Scholar 

  • Hollinger DY et al (1998) Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agric For Meteorol 90:291–306

    Article  Google Scholar 

  • Hugelius G et al (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • Ichii K et al (2017) New data-driven estimation of terrestrial CO2 flux in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J Geophys Res Biogeosci 122. https://doi.org/10.1002/2016jg003640

  • Ikawa H et al (2015) Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska. Agric For Meteorol 214–215:80–90

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535. https://doi.org/10.1017/cbo9781107415324

  • Iwata H, Harazono Y, Ueyama M (2012) The role of permafrost in water exchange of a black spruce forest in interior Alaska. Agric For Meteorol 161:107–115

    Article  Google Scholar 

  • Iwata H, Harazono Y, Ueyama M, Sakabe A, Nagano H, Kosugi Y, Takahashi K, Kim Y (2015) Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique. Agric For Meteorol 214–215:157–168

    Article  Google Scholar 

  • Jarvis P, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Article  Google Scholar 

  • Jung M et al (2017) Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541:516–520. https://doi.org/10.1038/nature20780

    Article  Google Scholar 

  • Kasurinen V et al (2014) Latent heat exchange in the boreal and arctic biomes. Global Change Biol 20:3439–3456

    Article  Google Scholar 

  • Kirschke S (2013) Three decades of global methane sources and sinks. Nat Goesci 6:813–823

    Article  Google Scholar 

  • Kwon HJ, Oechel WC, Zulueta RC, Hastings SJ (2006) Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems. J Geophys Res Biogeosci 111. https://doi.org/10.5194/bg-10-753-2013

  • Liljedahl AK, Hinzman LD, Kane DL, Oechel WC, Tweedie CE, Zona D (2017) Tundra water budget and implications of precipitation underestimation. Water Resour Res 53. https://doi.org/10.1002/2016wr020001

  • Lindroth A, Grelle A, Morén A-S (1998) Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol 4:443–450

    Article  Google Scholar 

  • Liu HP, Randerson JT, Lindfors J, Chapin FS III (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J Geophys Res 110:D13101. https://doi.org/10.1029/2004JD005158

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Machimura T, Kobayashi Y, Iwahana G, Hirano T, Lopez L, Fukuda M, Fedorov AN (2005) Change of carbon dioxide budget during three years after deforestation in eastern Siberian larch forest. J Agric Meteorol 60:653–656

    Article  Google Scholar 

  • Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008) Responses of surface conductance to forest environments in the Far East. Agric For Meteorol 148:1926–1940

    Article  Google Scholar 

  • McEwing KR, Fisher JP, Zona D (2015) Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil 388:37–52. https://doi.org/10.1007/s11104-014-2377-1

    Article  Google Scholar 

  • McFadden JP, Eugster W, Chapin FS III (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology 84(10):2762–2776

    Article  Google Scholar 

  • McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E, Kimball JS, Koven C, Lafleur P, Miller PA, Oechel W, Peylin P, Williams M, Yi Y (2012) An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosci 9:3185–3204

    Article  Google Scholar 

  • Melton JR et al (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788. https://doi.org/10.5194/bg-13-5043-2016

    Article  Google Scholar 

  • Merbold L, Kutsch WL, Corradi C, Kolle O, Rebmann C, Stoy PC, Zimov ZA, Schulze E-D (2009) Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob Change Biol 15:2599–2614

    Article  Google Scholar 

  • van der Molen MK, van Huissteden J, Parmentier FJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, Suzdalov DA (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4:985–1003

    Article  Google Scholar 

  • Nagano et al (2017) Extremely dry environment down-regulates nighttime respiration of a black spruce forest in Interior Alaska. Agric For Meteorol 249(15):297–309

    Google Scholar 

  • Nakai T et al (2013) Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. Polar Sci 7:136–148

    Article  Google Scholar 

  • Nakai T, Iwata H, Harazono Y (2011) Importance of mixing ratio for a long-term CO2 flux measurement with a closed-path system. Tellus 63B:302–308

    Article  Google Scholar 

  • Nakai Y, Matsuura Y, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost of central Siberia during a growing season. Theor Appl Climatol 93:133–147

    Article  Google Scholar 

  • Oechel WC, Laskowski CA, Burba G, Gioli B, Kalhori AAM (2014) Annual patterns and budget of CO2 flus in an Arctic tussock tundra ecosystem. J Geophys Res Biogeosci 119:323–339. https://doi.org/10.1002/2013JG002431

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981

    Google Scholar 

  • Ohta T et al (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148:1941–1953

    Article  Google Scholar 

  • Ohta T et al (2014) Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998-2011. Agric For Meteorol 188:64–775

    Article  Google Scholar 

  • Olefeldt D, Turetsky MR, Crill PM, McGuire D (2013) Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Change Biol 19:589–603. https://doi.org/10.1111/gcb.12071

    Article  Google Scholar 

  • Pearson RG, Philips SJ, Loranty MM, Beck PSA, Damoulas T, Knight SJ, Goetz SJ (2013) Shifts in arctic vegetation and associated feedbacks under climate change. Nat Clim Change 3:673–677. https://doi.org/10.1038/nclimate1858

    Article  Google Scholar 

  • Peters W et al (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTraker. Proc Natl Acad Sci 104:925–930

    Article  Google Scholar 

  • Piao S et al (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52. https://doi.org/10.1038/nature06444

    Article  Google Scholar 

  • Randerson JT et al (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132

    Article  Google Scholar 

  • Rocha AV, Shaver GR (2011) Burn severity influences postfire CO2 exchange in arctic tundra. Ecol Appl 21(2):477–489

    Article  Google Scholar 

  • Sachs T, Giebels M, Boike J, Kutzbach L (2010) Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Global Change Biol 16:3096–3110. https://doi.org/10.1111/j.1365-2486.2010.02232.x

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turestsky MR, Treat CC, Conk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  Google Scholar 

  • Sevanto S et al (2006) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26:749–757

    Article  Google Scholar 

  • Shutov V, Gieck RE, Hinzman LD, Kane DL (2006) Evaporation from land surface in high latitude areas: a review of methods and study results. Nordic Hydrol 37:393–411. https://doi.org/10.2166/nh.2006.022

    Article  Google Scholar 

  • Sturm MJ, Holmgren J, König M, Morris K (1997) The thermal conductivity of seasonal snow. J Glaciol 43:26–40

    Article  Google Scholar 

  • Sturtevant CS, Oechel WC (2013) Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Glob Change Biol 19:2853–2866. https://doi.org/10.1111/gcb.12247

    Article  Google Scholar 

  • Sundqvist E, Mölder M, Crill P, Kljun N (2015) Methane exchange in a boreal forest estimated by gradient method. Tellus B 67:26688

    Article  Google Scholar 

  • Suni T et al (2003) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob Change Biol 9:1410–1426

    Article  Google Scholar 

  • Takata K et al (2017) Reconciliation of top-down and bottom-up CO2 fluxes in Siberian larch forest. Environ Res Lett 12:125012

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EGA, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. https://doi.org/10.1029/2008gb003327

  • Tokida T, Miyazaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007) Falling atmospheric pressure as a trigger for methane ebullition from peatland. Glob Biogeochem Cycl 21:GB2003. https://doi.org/10.1029/2006gb002790

  • Troy TJ, Sheffield J, Wood EF (2011) Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data source. J Climate 24:3272–3293

    Article  Google Scholar 

  • Trucco C, Schuur AG, Natali SM, Belshe EF, Bracho R, Vogel J (2012) Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. J Geophys Res Biogeosci 117:G02031. https://doi.org/10.1029/2011JG001907

    Article  Google Scholar 

  • Turetsky MR et al (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Change Biol 20(7). https://doi.org/10.1111/gcb.12580

  • Ueyama M et al (2013a) Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J Geophys Res Biogeosci 118:1–16. https://doi.org/10.1002/jgrg.20095

    Article  Google Scholar 

  • Ueyama M et al (2014a) Change in surface energy balance in Alaska due to fire and spring warming, based on upscaling eddy covariance measurements. J Geophys Res Biogeosci 119:1947–1969. https://doi.org/10.1002/2014JG002717

    Article  Google Scholar 

  • Ueyama M et al (2016) Optimization of a biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects. Agric For Meteorol 222:98–111

    Article  Google Scholar 

  • Ueyama M, Harazono Y, Ohtaki E, Miyata A (2006) Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska. Tellus 58B:491–501

    Article  Google Scholar 

  • Ueyama M, Iwata H, Harazono Y (2014b) Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biol 20(4):1161–1173. https://doi.org/10.1111/gcb.12434

    Article  Google Scholar 

  • Ueyama M, Iwata H, Harazono Y, Euskirchen ES, Oechel WC, Zona D (2013b) Growing season and spatial variations of variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol Appl 22(8):1798–1816

    Article  Google Scholar 

  • Ueyama M, Iwata H, Nagano H, Tahara N, Iwama C (2019) Carbon dioxide balance in early-successional forests after fires in interior Alaska. Agric For Meteorol 275:196–207

    Article  Google Scholar 

  • Ueyama M, Yoshikawa K, Takagi K (2018) A cool-temperate young larch plantation as a net methane source- a 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements. Atm Environ 184:110–120. https://doi.org/10.1016/j.atmosenv.2018.04.025

    Article  Google Scholar 

  • Vourlitis GL, Harazono Y, Oechel WC, Yoshimoto M, Mano M (2000) Spatial and temporal variations in hectare-scale net CO2 flux, respiration and gross primary production of Arctic tundra ecosystems. Func Ecol 14:203–214

    Article  Google Scholar 

  • Wagner R, Zona D, Oechel W, Lipson D (2017) Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils. Environ Microbiol 19(8):3398–3410. https://doi.org/10.1111/1462-2920.13854

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla DV, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. https://doi.org/10.1038/nature05040

    Article  Google Scholar 

  • Watts JD, Kimball JS, Bartsch A, McDonald KC (2014) Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ Res Lett 9:075001. https://doi.org/10.1088/1748-9326/9/7/075001

    Article  Google Scholar 

  • Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric For Meteorol 147:172–185

    Article  Google Scholar 

  • Xu et al (2016) A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands. Biogeosciences 13:5043–5056. https://doi.org/10.5194/bg-13-5043-2016

    Article  Google Scholar 

  • Yang F et al (2006) Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans Geosci Remote Sens 44(3452):3561

    Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thnh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:489–491. https://doi.org/10.1038/nature13164

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002

    Google Scholar 

  • Zhuang Q, McGuire AD, O’Neill KP, Harden JW, Romanovsky VE, Yarie J (2003) Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J Geophys Res Biogeosci 108:8147. https://doi.org/10.1029/2001JD001244

    Article  Google Scholar 

  • Zona D et al (2014) Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning. Biogeosciences 11:5877–5888. https://doi.org/10.5194/bg-11-5877-2014

    Article  Google Scholar 

  • Zona D (2016) Long-term effects of permafrost thaw. Nature 537:625–626 https://doi.org/10.1038/537625a

    Article  Google Scholar 

  • Zona D et al (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci USA 113(1):40–45

    Article  Google Scholar 

  • Zona D et al (2009) Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochem Cycl 23:GB2013. https://doi.org/10.1029/2009gb003487

Download references

Acknowledgments

We thank Dr. K Ichii of Chiba University for providing the upscaled flux products, and Dr. T Hiyama of Nagoya University for discussion about water budget. We thank Dr. Y Harazono of Osaka Prefecture University, Dr. AV Rocha of University of Notre Dame, Dr. J Randerson of University of California, Irvine, for providing eddy covariance data at Alaska. We thank Dr. Y Matsuura of Forestry and Forest Products Research Institute, and Dr. H Dolman of Vrije Universiteit Amsterdam, for providing eddy covariance data at Siberia. Eddy flux data at Council were observed by Dr. J Beringer of University of Western Australia, FS Chapin III and C Copass-Thompson of the University of Alaska Fairbanks, and provided through the NCAR Earth Observing Laboratory. Databases of eddy covariance measurements (AsiaFlux, European Fluxes Database Cluster, the NSF Arctic Observatory Network, and NSF Arctic Data Center) facilitated this study. The US-Uaf site were supported by the Arctic Challenge for Sustainability (ArCS) project awarded to MU. The Barrow, and Atqasuk eddy covariance towers were supported by Office of Polar Programs of the National Science Foundation (NSF) awarded to DZ, and WCO (award number 1204263, and 1702797) with additional logistical support funded by the NSF Office of Polar Programs, and by the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), an Earth Ventures (EV-1) investigation, under contract with the National Aeronautics and Space Administration, and by the ABoVE (NNX15AT74A; NNX16AF94A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Ueyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ueyama, M. et al. (2021). Greenhouse Gases and Energy Fluxes at Permafrost Zone. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_18

Download citation

Publish with us

Policies and ethics