Skip to main content

Cosmological Constant Λ vs. Massive Gravitons: A Case Study in General Relativity Exceptionalism vs. Particle Physics Egalitarianism

  • Chapter
The Renaissance of General Relativity in Context

Part of the book series: Einstein Studies ((EINSTEIN,volume 16))

Abstract

The renaissance of General Relativity witnessed considerable progress regarding both understanding and justifying Einstein’s equations. Both general relativists and historians of the subject tend to share a view, General Relativity exceptionalism, which emphasizes how General Relativity is novel and unlike the other fundamental interactions. But does some of the renaissance progress in understanding and justifying Einstein’s equations owe something to an alien source, namely, particle physics egalitarianism, which emphasizes how similar General Relativity is to the other fundamental interactions? If so, how should the historiography of gravitation and Einstein’s equations reflect that fact? Two areas of renaissance progress can be considered very briefly (gravitational waves and the question of energy and the justification of Einstein’s field equations in terms of particle physics) and one in detail: the longstanding confusion over the relation between Einstein’s cosmological constant Λ and a graviton mass, confusion introduced in 1917 with Λ.

Regarding gravitational waves, General Relativity exceptionalism discouraged trusting the linear approximation, in which the existence of gravitational radiation is evident, whereas particle physics egalitarianism encouraged such trust. While general relativists differed on this issue in the 1950s, the rare particle physicist seriously involved, Feynman, was among those who invented the sticky bead argument that largely resolved the controversy. Regarding the justification of Einstein’s equations in terms of particle physics, the spin 2 derivations of Einstein’s equations provided considerably support of the view that Einstein’s equations correctly describe gravitation.

The idea of a graviton mass has a nineteenth-century Newtonian pre-history in Neumann’s and Seeliger’s long-distance modification of gravity, which (especially for Neumann) altered Poisson’s equation to give a potential e mrr for a point mass, improving convergence for homogeneous matter. Einstein reinvented the idea before introducing his faulty analogy with Λ. This confusion was first critiqued by Heckmann in the 1940s (without effect) and by Trautman, DeWitt, Treder, Rindler, and Freund et al. in the 1960s, and especially more recently by Schücking, but it has misled North, Jammer, Pais, Kerszberg, the Einstein Papers, and Kragh. The error is difficult to catch if one has an aversion to perturbative thinking, but difficult to make if one thinks along the lines of particle physics. Λ contributes predominantly a zeroth order term to the field equations (a constant source), whereas a graviton mass contributes a linear term. Nonperturbatively, massive spin 2 gravity is bimetric. The Λ-graviton mass confusion not only distorted the interpretation of Einstein’s theory, but also obscured a potentially serious particle physics-motivated rivalry (massless vs. massive spin 2). How could one entertain massive spin 2 gravity if Λ is thought already analogous to the Neumann-Seeliger scalar theory? Massive spin 2 gravity would encounter problems within particle physics in the early 1970s, which have been substantially resolved in recent years (though new problems have arisen). Other authors manage to avoid confusing Λ with the Neumann-Seeliger long-range decay but fail to recognize that the latter, with the physical meaning of a graviton mass, provides an interesting case of unconceived alternatives.

In sum, both the interpretation and the justification of Einstein’s equations owed some of their renaissance progress to particle physics egalitarianism. Historiography, like physics, is best served by overcoming the divide between the two views of gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The obvious exception was the Russian school of A. A. Logunov and collaborators starting in the late 1970s, which was largely ignored by others or occasionally subject to polemics (Zel’dovich and Grishchuk 1988), not without some justification. Logunov being the editor of the Russian original of Theoretical and Mathematical Physics and a Soviet and Russian Academician, he was able to maintain a noticeable research group with many publications.

  2. 2.

    Mathematically with the graviton mass term one has a superposition of exponentially decaying and exponentially growing factors times \(\frac {1}{r},\) but one routinely discards the growing solution on grounds of physical reasonableness. With the zeroth order term in the field equations, by contrast, there are no solutions to spare and a (quadratically) growing solution cannot be discarded.

  3. 3.

    “In diesem Zusammenhang sei folgendes bemerkt: Die von (21) verschiedene Gleichung Δ Φ + λ Φ = 4πGρ wird von EINSTEIN in der S. 2. Anm. 4 zitierten Arbeit zur Erläuterung der Einführung des Gliedes λg μν in seine Feldgleichungen herangezogen. Dieser bereits von C. NEUMANN gemachte Abänderungsvorschlag des NEWTONschen Gezetzes (vgl. S. 1 Anm. 1) ergibt sich aber nicht als Näherung aus den Feldgleichungen der Relativitätstheorie. Damit ist die Begründung, die HECKMANN und SIEDENTOPF [Z. Astrophys. 1, 67 (1930)] für ihre Gleichung (5, 18) gegeben haben, hinfällig.” (Heckmann 1942, 15, emphasis in the original).

  4. 4.

    “Die Konstante λ kann nun aber nicht proportional k 2 gesetzt werden, wobei k −1 die Comptonwellenlänge des Gravitons wäre. Bilden wir nämlich das Äquivalent von (1.7) [the linearized wave equation, without the cosmological constant] zu den neuen Gleichungen (1.10) [Einstein’s equations with the cosmological constant], so erhalten wir

    Damit aber λ im wesentlichen k 2 sein könnte, müßte anstelle von (1.11)

    gelten” [references to papers by L. de Broglie and M.-A. Tonnelat].

  5. 5.

    They were presumably not reckoning sufficiently with the ghost problem, though they did discuss it. But their appendix is evidently the first public appearance of a nonlinearly ghost-free, that is pure spin 2, massive gravity, singled out from among the OP 2-parameter family of theories. The nonlinear argument was published later (Maheshwari 1972) (submitted no later than early April 1971). This (Tyutin-Fradkin-)Boulware-Deser nonlinear ghost problem was pre-solved before it was proposed. But no one noticed and the problem had to be solved again in 2010. Thus the decades of darkness for massive gravity were quite contingent. Maheshwari was unaware of the van Dam-Veltman-Zakharov discontinuity, however.

References

  • Anderson, J.L., and P.G. Bergmann. 1951. Constraints in covariant field theories. Physical Review 83: 1018–1025.

    MathSciNet  MATH  Google Scholar 

  • Bergmann, P.G., and I. Goldberg. 1955. Dirac bracket transformations in phase space. Physical Review 98: 531–538.

    MathSciNet  MATH  Google Scholar 

  • Blum, A., D. Giulini, R. Lalli, and J. Renn. 2017. Editorial introduction to the special issue “The renaissance of Einstein’s theory of gravitation”. European Physical Journal H 42: 95–105.

    Google Scholar 

  • Blum, A., R. Lalli, and J. Renn. 2015. The reinvention of general relativity: A historiographical framework for assessing one hundred years of curved space-time. Isis 106: 598–620.

    MathSciNet  Google Scholar 

  • ———. 2016. The renaissance of general relativity: How and why it happened. Annalen der Physik 528(5): 344–349.

    MathSciNet  Google Scholar 

  • ———. 2018. Gravitational waves and the long relativity revolution. Nature Astronomy 2: 534–543.

    Google Scholar 

  • Boulware, D.G., and S. Deser. 1972. Can gravitation have a finite range? Physical Review D 6: 3368–3382.

    Google Scholar 

  • Brink, L. 2006. A non-geometric approach to 11-dimensional supergravity. In DeserFest: A celebration of the life and works of Stanley Deser, ed. J.T. Liu, M.J. Duff, K.S. Stelle, and R.P. Woodard, 40–54. Hackensack: World Scientific.

    Google Scholar 

  • Brulin, O., and S. Hjalmars. 1959. The gravitational zero mass limit of spin-2 particles. Arkiv för Fysik 16: 19–32.

    MathSciNet  MATH  Google Scholar 

  • Cattani, C., and M. De Maria. 1993. Conservation laws and gravitational waves in general relativity (1915–1918). In The attraction of gravitation: New studies in the history of general relativity, ed. J. Earman, M. Janssen, and J.D. Norton, 63–87. Boston: Birkhäuser.

    Google Scholar 

  • de Broglie, L. 1922. Rayonnement noir et quanta de lumière. Journal de Physique et la Radium 3: 422–428.

    Google Scholar 

  • ———. 1924. A tentative theory of light quanta. Philosophical Magazine and Journal of Science 47: 446–458.

    Google Scholar 

  • de Rham, C. 2014. Massive gravity. Living Reviews in Relativity 17: 7. arXiv:1401.4173v2 [hep-th].

    Google Scholar 

  • de Rham, C., G. Gabadadze, and A.J. Tolley. 2011. Resummation of massive gravity. Physical Review Letters 106: 231101. arXiv:1011.1232v2 [hep-th].

    Google Scholar 

  • Deffayet, C., G. Dvali, G. Gabadadze, and A.I. Vainshtein. 2002. Nonperturbative continuity in graviton mass versus perturbative discontinuity. Physical Review D 65: 044026. hep-th/0106001v2.

    Google Scholar 

  • Deser, S. 1970. Self-interaction and gauge invariance. General Relativity and Gravitation 1: 9–18. arXiv:gr-qc/0411023v2.

    Google Scholar 

  • DeWitt, B.S. 1965. Dynamical theory of groups and fields. New York: Gordon and Breach.

    MATH  Google Scholar 

  • DeWitt, B.S., and C.M. DeWitt. 1952. The quantum theory of interacting gravitational and spinor fields. Physical Review 87: 116–122.

    MathSciNet  Google Scholar 

  • DeWitt, C., and B.S. DeWitt, eds. 1964. Relativité, groupes et topologie = Relativity, groups and topology: Lectures delivered at Les Houches during the 1963 session of the Summer School of theoretical physics, University of Grenoble. Les Houches: Ecole d’été de physique théorique, Haute-Savoie.

    Google Scholar 

  • Dirac, P.A.M. 1958. The theory of gravitation in Hamiltonian form. Proceedings of the Royal Society of London A 246: 333–343.

    MathSciNet  MATH  Google Scholar 

  • Droz-Vincent, P. 1959. Généralisation des équationes d’Einstein correspondant à l’hypothèse d’une masse non nulle pour la graviton. Comptes rendus hebdomadaires des séances de l’Académie des sciences 249: 2290–2292.

    MathSciNet  MATH  Google Scholar 

  • Earman, J. 2001. Lambda: The constant that refuses to die. Archive for History of Exact Sciences 55: 189–220.

    MathSciNet  MATH  Google Scholar 

  • Eddington, A.S. 1952. The mathematical theory of relativity, 2nd ed. reprinted. Cambridge: Cambridge University Press.

    Google Scholar 

  • Einstein, A. 1913. Zum gegenwärtigen Stande des Gravitationsproblems. Physikalische Zeitschrift 14: 1249–1262. Translated as On the present state of the problem of gravitation. In The genesis of general relativity, vol. 3: Gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy, ed. Jürgen Renn and Matthias Schemmel, 543–566. Dordrecht: Springer, 2007.

    Google Scholar 

  • ———. 1919. Bemerkung über periodische Schwankungen der Mondlänge, welche bisher nach der Newtonschen Mechanik nicht erklärbar schienen (Comment about periodical fluctuations of lunar longitude, which so far appeared to be inexplicable in Newtonian mechanics). Königliche Preussiche Akademie der Wissenschaften (Berlin). Sitzungsberichte: 433–436. Reprinted in The collected papers of Albert Einstein, vol. 7: The Berlin writings, 1918–1921, ed. Michel Janssen, Robert Schulmann, Jósef Illy, Christoph Lehner and Diana Kormos-Buchwald, 141–146. Princeton: Princeton University Press, 2002.

    Google Scholar 

  • ———. 1996a. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In The collected papers of Albert Einstein, vol. 6: The Berlin writings, 1914–1917, ed. A.J. Kox, Martin Klein, and Robert Schulmann, xix–xxi, 540–552. Princeton: Princeton University Press. Originally printed in 1917, Sitzungsberichte der Königlich Preussichen Akademie der Wissenschaften zu Berlin: 142–152. Translated as Cosmological considerations on the general theory of relativity. In H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, A. Sommerfeld, W. Perrett, and G.B. Jeffery. 1952. The principle of relativity, 175–188. Dover edition. New York: Dover.

    Google Scholar 

  • ———. 1996b. Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich). In The collected papers of Albert Einstein, vol. 6: The Berlin writings, 1914–1917, ed. A.J. Kox, M. Klein, and R. Schulmann, 420–539. Princeton: Princeton University Press. Originally by Friedrich Vieweg & Sohn, Braunschweig (1917). Translated as On the special and general theory of relativity (A popular account). In The collected papers of Albert Einstein, vol. 6: The Berlin Years: writings, 1914–1917, English translation, trans. Alfred Engel and Engelbert Schucking, 247–420. Princeton: Princeton University Press, 1997.

    Google Scholar 

  • ———. 1998. To Rudolf Förster (16 Nov 1917). In The collected papers of Albert Einstein, vol. 8, The Berlin years: Correspondence, 1914–1918, ed. R. Schulmann, A.J. Kox, M. Janssen, and J. Illy, 556–557. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • ———. 2002. Excerpt from lecture notes for course on general relativity at the University of Zurich, summer semester of 1919. In The collected papers of Albert Einstein, vol. 7. The Berlin writings, 1918–1921, ed. M. Janssen, R. Schulmann, J. Illy, C. Lehner, and D. Kormos-Buchwald, 185–189. Princeton: Princeton University Press.

    Google Scholar 

  • Feynman, R.P., F.B. Morinigo, W.G. Wagner, B. Hatfield, J. Preskill, and K.S. Thorne. 1995. Feynman lectures on gravitation. Reading: Addison-Wesley. Original mimeograph by California Institute of Technology, 1963.

    Google Scholar 

  • Fierz, M. 1939. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helvetica Physica Acta 12: 3–37. Translation by Guglielmo Pasa at https://arxiv.org/pdf/1704.00662.pdf.

  • ———. Über den Drehimpuls von Teilchen mit Ruhemasse null und beliebigem Spin. Helvetica Physica Acta 13: 45–60.

    Google Scholar 

  • Fierz, M., and W. Pauli. 1939. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proceedings of the Royal Society (London) A 173: 211–232.

    MathSciNet  MATH  Google Scholar 

  • Freund, P.G.O., A. Maheshwari, and E. Schonberg. 1969. Finite-range gravitation. Astrophysical Journal 157: 857–867.

    Google Scholar 

  • Goenner, H. 2018. Heckmann, Otto Hermann Leopold. In Complete dictionary of scientific biography. https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/heckmann-otto-hermann-leopold.

  • Gupta, S.N. 1954. Gravitation and electromagnetism. Physical Review 96: 1683–1685.

    MathSciNet  MATH  Google Scholar 

  • Harrison, E. 1986. Newton and the infinite universe. Physics Today 39(2): 24–32.

    Google Scholar 

  • Harvey, A., and E. Schucking. 2000. Einstein’s mistake and the cosmological constant. American Journal of Physics 68(8): 723–727.

    MathSciNet  MATH  Google Scholar 

  • Hassan, S.F., and R.A. Rosen. 2012. Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity. Journal of High Energy Physics 1204(123): 0–16. arXiv:1111.2070 [hep-th].

    Google Scholar 

  • Heckmann, O. 1942. Theorien der Kosmologie, revised edition. Berlin: Springer. Reprinted 1968.

    MATH  Google Scholar 

  • Heckmann, O., and H. Siedentopf, 1930. Zur Dynamik kugelförmiger Sternhaufen. Zeitschrift für Astrophysik 1: 67–97.

    MATH  Google Scholar 

  • Hinterbichler, K. 2012. Theoretical aspects of massive gravity. Reviews of Modern Physics 84: 671–710. arXiv:1105.3735v2 [hep-th].

    Google Scholar 

  • Iwasaki, Y. 1970. Consistency condition for propagators. Physical Review D 2: 2255–2256.

    Google Scholar 

  • Jaki, S.L. 1979. Das Gravitations-Paradoxon des unendlichen Universums. Sudhoffs Archiv 63: 105–122.

    MathSciNet  MATH  Google Scholar 

  • Jammer, M. 1993. Concepts of space, 3rd ed. New York: Dover.

    Google Scholar 

  • ———. 1997. Concepts of mass, in classical and modern physics, corrected reprint of 1961 original edition. Mineola: Dover.

    Google Scholar 

  • Janssen, M. 1999. Rotation as the nemesis of Einstein’s Entwurf theory. In The expanding worlds of general relativity, ed. H. Goenner, J. Renn, J. Ritter, and T. Sauer, 127–157. Boston: Birkhäuser.

    Google Scholar 

  • Kaiser, D. 1998. A ψ is just a ψ? Pedagogy, practice, and the reconstitution of general relativity, 1942–1975. Studies in History and Philosophy of Modern Physics 29: 321–338.

    MathSciNet  MATH  Google Scholar 

  • Kennefick, D. 2007. Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Kerszberg, P. 1989. The invented universe: The Einstein-De Sitter controversy (1916–17) and the rise of relativistic cosmology. Oxford: Clarendon Press.

    Google Scholar 

  • Kottler, F. 1918. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik (Leipzig) 56: 401–462.

    MATH  Google Scholar 

  • Kragh, H. 2004. Matter and spirit in the universe: Scientific and religious preludes to modern cosmology. London: Imperial College.

    Google Scholar 

  • Kraichnan, R.H. 1955. Special-relativistic derivation of generally covariant gravitation theory. Physical Review 98: 1118–1122.

    MathSciNet  MATH  Google Scholar 

  • Laplace, P.S. 1846. Oeuvres de Laplace: Traité de mécanique céleste, vol. 5. Paris: Imprimerie Royale.

    Google Scholar 

  • Maheshwari, A. 1972. Spin-2 field theories and the tensor-field identity. Il Nuovo Cimento 8A: 319–330.

    Google Scholar 

  • Mamone Capria, M. 2005. The rebirth of cosmology: From the static to the expanding universe. In Physics before and after Einstein, ed. M. Mamone Capria, 129–162. Amsterdam: IOS Press.

    Google Scholar 

  • McCrea, W.H., and E.A. Milne. 1934. Newtonian universes and the curvature of space. The Quarterly Journal of Mathematics 5: 73–80.

    MATH  Google Scholar 

  • Neumann, C. 1886. Ueber gewisse particulare Integrale der Differentialgleichung ΔF = F, insbesondere über die Entwickelung dieser particularen Integrale nach Kugelfunctionen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe 38: 75–82.

    Google Scholar 

  • ———. 1896. Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen mit besonderer Rücksicht auf die Elektrischen Wirkungen. Leipzig: B. G. Teubner.

    MATH  Google Scholar 

  • ———. 1903. Über eine gewisse Gattung von Kugelflächen-Integralen. Berichte über die Verhandlungen der Königlich Säschsichen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 55: 264–286.

    MATH  Google Scholar 

  • North, J.D. 1990. The measure of the universe: A history of modern cosmology. Dover reprint. Originally published in 1965 by Oxford University Press. New York: Dover.

    Google Scholar 

  • ———. 1994. The Norton history of astronomy and cosmology. New York: W. W. Norton & Company.

    Google Scholar 

  • Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. In The expanding worlds of general relativity, ed. H. Goenner, J. Renn, J. Ritter, and T. Sauer, 271–323. Boston: Birkhäuser.

    Google Scholar 

  • ———. 2007. Einstein, Nordström and the early demise of scalar, Lorentz covariant theories of gravitation. In The genesis of general relativity, volume 3: Gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy, ed. J. Renn and M. Schemmel, 413–487. Dordrecht: Springer. http://www.pitt.edu/~jdnorton/papers/Nordstroem.pdf.

    Google Scholar 

  • Ogievetskiĭ, V.I., and I.V. Polubarinov. 1965. Spinors in gravitation theory. Soviet Physics JETP 21: 1093–1100.

    Google Scholar 

  • Ogievetsky, V.I., and I.V. Polubarinov. 1965. Interacting field of spin 2 and the Einstein equations. Annals of Physics 35: 167–208.

    Google Scholar 

  • Ohanian, H., and R. Ruffini. 1994. Gravitation and spacetime, 2nd ed. New York: Norton.

    MATH  Google Scholar 

  • O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2017. Einstein’s 1917 static model of the universe: A centennial review. The European Physical Journal H 42: 431–474. arXiv:1711.06890v2 [physics.hist-ph]).

    Google Scholar 

  • Pais, A. 1982. ‘Subtle is the Lord…’: The science and the life of Albert Einstein. Oxford: Oxford University Press.

    Google Scholar 

  • Paul, E.R. 1993. The Milky Way galaxy and statistical cosmology, 1890–1924. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pauli, W. 1921. Theory of relativity. New York: Pergamon. English translation 1958 by G. Field; republished by Dover, New York, 1981.

    Google Scholar 

  • Pauli, W., and M. Fierz. 1939. Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld. Helvetica Physica Acta 12: 297–300.

    MATH  Google Scholar 

  • Perlick, V. 2004. Gravitational lensing from a spacetime perspective. Living Reviews in Relativity 7: 9. http://www.livingreviews.org/lrr-2004-9.

    MATH  Google Scholar 

  • Perlmutter, S., et al. 1999. Measurements of ω and λ from 42 high-redshift supernovae. Astrophysical Journal 517: 565–586.

    MATH  Google Scholar 

  • Petiau, G. 1944. Sur la représentation des interactions massiques par l’intermédiaire des ondes longitudinales de la théorie de la particule de spin 2(h∕2π). Comptes rendus hebdomadaires des séances de l’Académie des sciences 218: 34–36.

    MathSciNet  Google Scholar 

  • ———. 1945. Sur les interactions entre particules matérielles s’exerçant par l’intermédiaire de la particule de spin \(2\frac {h}{2\pi }\). Journal de Physique et le Radium 6: 115–120.

    MathSciNet  Google Scholar 

  • Pitts, J.B. 2006. Absolute objects and counterexamples: Jones-Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density. Studies in History and Philosophy of Modern Physics 37: 347–371. arXiv:gr-qc/0506102v4.

    Google Scholar 

  • ———. 2009. Empirical equivalence, artificial gauge freedom and a generalized Kretschmann objection. http://philsci-archive.pitt.edu/archive/00004995/; arXiv:0911.5400.

  • ———. 2011. Permanent underdetermination from approximate empirical equivalence in field theory: Massless and massive scalar gravity, neutrino, electromagnetic, Yang-Mills and gravitational theories. The British Journal for the Philosophy of Science 62: 259–299.

    Google Scholar 

  • ———. 2012a. The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors (almost) fit into tensor calculus, and 7∕16 of a tetrad is surplus structure. Studies in History and Philosophy of Modern Physics 43: 1–24. arXiv:1111.4586.

    Google Scholar 

  • ———. 2012b. Universally coupled massive gravity, II: Densitized tetrad and cotetrad theories. General Relativity and Gravitation 44: 401–426. arXiv:1110.2077.

    Google Scholar 

  • ———. 2016a. Einstein’s equations for spin 2 mass 0 from Noether’s converse Hilbertian assertion. Studies in History and Philosophy of Modern Physics 56: 60–69. PhilSci; arxiv:1611.02673 [physics.hist-ph].

    Google Scholar 

  • ———. 2016b. Einstein’s physical strategy, energy conservation, symmetries, and stability: “but Grossmann & I believed that the conservation laws were not satisfied”. Studies in History and Philosophy of Modern Physics 54: 52–72. PhilSci; arxiv.org/1604.03038 [physics.hist-ph].

    Google Scholar 

  • ———. 2016c. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination. Studies in History and Philosophy of Modern Physics 53: 73–92. arXiv:1509.03303 [physics.hist-ph].

    Google Scholar 

  • ———. 2016d. Universally coupled massive gravity, III: dRGT-Maheshwari pure spin-2, Ogievetsky-Polubarinov and arbitrary mass terms. Annals of Physics 365: 73–90. arXiv:1505.03492 [gr-qc].

    Google Scholar 

  • ———. 2017a. Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity. Classical and Quantum Gravity 34: 055008. arXiv:1609.04812 [gr-qc].

    Google Scholar 

  • ———. 2017b. Progress and gravity: Overcoming divisions between general relativity and particle physics and between science and HPS. In The philosophy of cosmology, ed. K. Chamcham, J. Silk, J. Barrow, and S. Saunders, 263–282. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316535783.014.

  • Pitts, J.B., and W.C. Schieve. 2001. Slightly bimetric gravitation. General Relativity and Gravitation 33: 1319–1350. arXiv:gr-qc/0101058v3.

    Google Scholar 

  • Pockels, F. 1891. Über die Partielle Differentialgleichung Δu + k 2 u = 0 und deren Auftreten in der mathematischen Physik. Leipzig: B. G. Teubner.

    MATH  Google Scholar 

  • Proca, A. 1936. Sur la théorie ondulatoire des électrons positifs et négatifs. Journal de Physique et le Radium 7: 347–353.

    MATH  Google Scholar 

  • Riess, A.G., A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116: 1009–1038.

    Google Scholar 

  • Rindler, W. 1969. Essential relativity: Special, general, and cosmological. New York: Van Nostrand Reinhold Company.

    MATH  Google Scholar 

  • Rosenfeld, L. 1930. Zur Quantelung der Wellenfelder. Annalen der Physik 397: 113–152. Translation by Donald Salisbury and Kurt Sundermeyer as On the quantization of wave fields. The European Physical Journal H 42: 63–94, 2017.

    Google Scholar 

  • Rovelli, C. 2002. Notes for a brief history of quantum gravity. In Proceedings of the ninth Marcel Grossmann meeting (held at the University of Rome “La Sapienza,” 2–8 July 2000), ed. R.T. Jantzen, R. Ruffini, and V.G. Gurzadyan, 742–768. River Edge: World Scientific. arXiv:gr-qc/0006061.

    Google Scholar 

  • Salisbury, D., and K. Sundermeyer. 2017. Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics. The European Physical Journal H 42: 23–61. https://doi.org/10.1140/epjh/e2016-70042-7.

    Google Scholar 

  • Schucking, E.L. 1991. The introduction of the cosmological constant. In Gravitation and modern cosmology: The cosmological constant problem, volume in honor of Peter Gabriel Bergmann’s 75th birthday, ed. A. Zichichi, V. de Sabbata, and N. Sánchez, 185–187. New York: Plenum.

    Google Scholar 

  • Seligman, C.B. 1949. I. The Theory of Gravitational Interactions. II. The Interaction of Gravitation with Light. Ph.D. thesis, Harvard University.

    Google Scholar 

  • Tonnelat, M.-A. 1941. Sur les ondes planes de la particule de spin 2 (graviton). Comptes rendus hebdomadaires des séances de l’Académie des sciences 212: 263–266.

    MATH  Google Scholar 

  • ———. 1944a. La particule de spin 2 et la loi de gravitation d’Einstein dans le cas de présence de matière. Comptes rendus hebdomadaires des séances de l’Académie des sciences 218: 305–308.

    MathSciNet  MATH  Google Scholar 

  • ———. 1944b. Les phénomènes de gravitation. Étude des interactions entre la matiére et la particule de spin 2. Annales de Physique 19: 396–445.

    Google Scholar 

  • ———. 1965. Les théories unitaires de l’électromagnétisme et de la gravitation. Tome XI. Paris: Gauthier-Villars.

    MATH  Google Scholar 

  • Trautman, A. 1965. Foundations and current problems of general relativity. In Lectures on general relativity, ed. S. Deser and K.W. Ford, 1–248. Notes by Graham Dixon, Petros Florides, and Gerald Lemmer. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Treder, H.-J. 1963. Gravitonen. Fortschritte der Physik 11: 81–107.

    MathSciNet  MATH  Google Scholar 

  • ———. 1968. On the question of a cosmological rest mass of gravitons. International Journal of Theoretical Physics 1: 167–169.

    Google Scholar 

  • Tyutin, I.V., and E.S. Fradkin. 1972. Quantization of massive gravitation. Soviet Journal of Nuclear Physics 15: 331–334.

    Google Scholar 

  • Uzan, J-P., G.F.R. Ellis, and J. Larena, 2011. A two-mass expanding exact space-time solution. General Relativity and Gravitation 43: 191–205. arXiv:1005.1809v2.

    Google Scholar 

  • Vainshtein, A.I. 1972. To the problem of nonvanishing gravitation mass. Physics Letters B 39: 393–394.

    Google Scholar 

  • van Dam, H., and M. Veltman. 1970. Massive and mass-less Yang-Mills and gravitational fields. Nuclear Physics B 22: 397–411.

    Google Scholar 

  • ———. 1972. On the mass of the graviton. General Relativity and Gravitation 3: 215–220.

    Google Scholar 

  • van Nieuwenhuizen, P. 1973. On ghost-free tensor Lagrangians and linearized gravitation. Nuclear Physics B 60: 478–492.

    MathSciNet  Google Scholar 

  • von Seeliger, H. 1895. Ueber das Newton’sche Gravitationgesetz. Astronomische Nachrichten 137: 129–136. http://articles.adsabs.harvard.edu/pdf/1895AN....137..129S.

    MATH  Google Scholar 

  • ———. 1896. Ueber das Newton’sche Gravitationgesetz. Sitzungsberichte der mathematisch-physikalischen Classe der k. b. Akademie der Wissenschaften zu München 26: 373–400.

    MATH  Google Scholar 

  • ———. 1898. On Newton’s law of gravitation. Popular Astronomy 5: 474–478, 544–551.

    Google Scholar 

  • Weber, J. 1991. Velocity of propagation of gravitational radiation, mass of the graviton, range of the gravitational force, and the cosmological constant. In Gravitation and modern cosmology: The cosmological constant problem, volume in honor of Peter Gabriel Bergmann’s 75th birthday, ed. A. Zichichi, V. de Sabbata, and N. Sánchez, 217–223. New York: Plenum.

    Google Scholar 

  • Weyl, H. 1919. Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen. Physikalische Zeitschrift 20: 31–34.

    MATH  Google Scholar 

  • Zakharov, V.I. 1970. Linearized gravitation theory and the graviton mass. Journal of Experimental and Theoretical Physics Letters 12: 312–314.

    Google Scholar 

  • Zel’dovich, Y.B., and L.P. Grishchuk. 1988. The general theory of relativity is correct! Soviet Physics Uspekhi 31: 666.

    MathSciNet  Google Scholar 

  • Zwicky, F. 1961. Cosmic and terrestrial tests for rest mass of gravitons. Publications of the Astronomical Society of the Pacific 73(434): 314–317.

    Google Scholar 

Download references

Acknowledgements

Many thanks are due to Alexander Blum for assistance with translations, editing, points of emphasis, and acquainting me with Bryce (Seligman) DeWitt’s dissertation; to Jürgen Renn, Roberto Lalli, and the rest of the Discussion Group on the Recent History of General Relativity at the Max-Planck-Institut für Wissenschaftsgeschichte for the opportunity to participate; to Michel Janssen and Dennis Lehmkuhl for discussion; to Karl-Heinz Schlote for help in finding Neumann’s works; and to Cormac O’Raifeartaigh for discussion and mentioning the Mamone Capria paper. This work was supported by the John Templeton Foundation grants #38761 and #60745 and the National Science Foundation (USA) STS grant #1734402; all views are my own.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Pitts, J.B. (2020). Cosmological Constant Λ vs. Massive Gravitons: A Case Study in General Relativity Exceptionalism vs. Particle Physics Egalitarianism. In: Blum, A.S., Lalli, R., Renn, J. (eds) The Renaissance of General Relativity in Context. Einstein Studies, vol 16. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-50754-1_6

Download citation

Publish with us

Policies and ethics