Skip to main content

Nanoemulsions: An Emerging Technology in Drug Delivery

  • Chapter
  • First Online:
Emerging Technologies for Nanoparticle Manufacturing

Abstract

Nanoemulsions are a class of two-phase liquid systems with an internal phase droplet size of less than 200 nm. Although two-phase emulsion systems have been known for decades, the concept of nanoemulsions is fairly recent. Nanoemulsion stability is far more reliable than traditional two-phase “macro”-emulsion systems, which has led to nanoemulsions becoming an attractive option for the delivery of diverse categories of lipophilic small molecule drugs and bioactive agents. This chapter presents an overview of the theories underlying the formulation of emulsions for maximum stability and potential for scale-up. Both low and high energy dispersive techniques have been discussed with suggestions of suitable equipment. Various techniques for formulation have been discussed with specific attention to the nature of the drug and suitability of the excipients. Correlations have been established between stability of nanoemulsions and the nature and concentration of the surfactant, cosurfactant, oil phase, and temperature. A brief section has been devoted to the in vitro characterization of nanoemulsions with reference to instrumentation and techniques used in the pharmaceutical industry. The last part of the chapter is devoted to the application of nanoemulsions in anticancer drug delivery, with examples on how these novel delivery systems can enhance the efficacy of anticancer drugs while significantly reducing the toxic effects of the chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova E, Bronitch T, Kabanov A. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B: Biointerfaces. 1999;16(1–4):113–34.

    Article  CAS  Google Scholar 

  • Bagwe RP, Palla JKB, Patanjali PK. Improved drug delivery using. Crit Rev Ther Drug Carrier Syst. 2001;18(1):77–140.

    CAS  PubMed  Google Scholar 

  • Barker N, Hadgraft J. Facilitated percutaneous absorption: a model system. Int J Pharm. 1981;8(3):193–202.

    Article  CAS  Google Scholar 

  • Batrakova EV, Li S, Alakhov VY, Elmquist WF, Miller DW, Kabanov AV. Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharm Res. 2003;20(10):1581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becher P, editor. Encyclopedia of emulsion technology – Volume 1. Basic theory. New York: Marcel Dekker, Inc.; 1983. p. 725.

    Google Scholar 

  • Benita S. Biofate of fat emulsions. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. 1st ed. Singapore: Harwood Academic Publisher; 1998a. p. 99–118.

    Google Scholar 

  • Benita S. Introduction and overview. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. 1st ed. Singapore: Harwood Academic Publisher; 1998b. p. 1–3.

    Google Scholar 

  • Bolzinger-Thevenin MA, Grossiord JL, Poelman MC. Characterization of a sucrose ester microemulsion by freeze fracture electron micrograph and small angle neutron scattering experiments. Langmuir. 1999;15(7):2307–15.

    Article  CAS  Google Scholar 

  • Buyukozturk F, Benneyan JC, Carrier RL. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J Control Release. 2010;142(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  • Chansri N, Kawakami S, Yamashita F, Hashida M. Inhibition of liver metastasis by all-trans retinoic acid incorporated into O/W emulsions in mice. Int J Pharm. 2006;321(1–2):42–9.

    Article  CAS  PubMed  Google Scholar 

  • Chidambaran N, Burgess D. Emulsions: design and manufacture. In: Burgess DJ, editor. Injectable dispersed systems. Boca Raton: Taylor & Francis; 2005. p. 213–41.

    Google Scholar 

  • Clark SB, Derksen A. Phosphatidylcholine composition of emulsions influences triacylglycerol lipolysis and clearance from plasma. Biochim Biophys Acta. 1987;920(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  • D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm. 2014;2014:304757.

    Google Scholar 

  • Dias ML, Carvalho JP, Rodrigues DG, Graziani SR, Maranhao RC. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother Pharmacol. 2007;59(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  • Evers R, Kool M, Smith AJ, Van Deemter L, De Haas M, Borst P. Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1-and MRP2-mediated transport. Br J Cancer. 2000;83(3):366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. In: Polymer drugs in the clinical stage. Boston: Springer; 2004. p. 29–49.

    Chapter  Google Scholar 

  • Gao ZG, Choi HG, Shin HJ, Park KM, Lim SJ, Hwang KJ, Kim CK. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm. 1998;161(1):75–86.

    Article  CAS  Google Scholar 

  • Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo MS, Hageman MJ. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386–98.

    Article  CAS  PubMed  Google Scholar 

  • Garti A, and Aserin A. Pharmaceutical emulsions, double emulsions, and microemulsions. In: Benita S, ed. Microencapsulation. New York: Marcel Dekker, Inc.; 1996. p. 411–534.

    Google Scholar 

  • Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50(1):179–88.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PK, Murthy RSR. Microemulsions: a potential drug delivery system. Curr Drug Deliv. 2006;3(2):167–80.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein D, Gofrit O, Nyska A, Benita S. Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer. Cancer Res. 2007;67(1):269–75.

    Article  CAS  PubMed  Google Scholar 

  • Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5:249–56.

    Google Scholar 

  • Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  CAS  Google Scholar 

  • Haskell RJ, Shifflett JR, Elzinga PA. Particle-sizing technologies for submicron emulsions. In: Submicron emulsions in drug targeting and delivery, vol. 9. Amsterdam: Harwood Academic Publishers; 1998. p. 21–98.

    Google Scholar 

  • Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, Keirns JJ. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  • Karasulu HY, Karabulut B, Göker E, Güneri T, Gabor F. Controlled release of methotrexate from w/o microemulsion and its in vitro antitumor activity. Drug Deliv. 2007;14(4):225–33.

    Article  CAS  PubMed  Google Scholar 

  • Kovarik JM, Mueller EA, Kutz K, Van Bree JB, Tetzloff W. Reduced inter-and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83(3):444–6.

    Article  CAS  PubMed  Google Scholar 

  • Kuo F, Kotyla T, Wilson T, Kifle L, Panagiotou T, Gruverman I, Tagne JB, Shea T, Nicolosi R. A nanoemulsion of an anti-oxidant synergy formulation reduces tumor growth rate in neuroblastoma-bearing nude mice. J Exp Ther Oncol. 2007;6(2):129–35.

    CAS  PubMed  Google Scholar 

  • Li P, Ghosh A, Wagner RF, Krill S, Joshi YM, Serajuddin AT. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int J Pharm. 2005;288(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  • Maali A, Mosavian MH. Preparation and application of nanoemulsions in the last decade (2000–2010). J Dispers Sci Technol. 2013;34(1):92–105.

    Article  CAS  Google Scholar 

  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev. 1991;6(2):181–202.

    Article  CAS  Google Scholar 

  • Maeda HAYM, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989;6(3):193–210.

    CAS  PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  • Magdassi S, Frenkel M, Garti N. On the factors affecting the yield of preparation and stability of multiple emulsions. J Dispers Sci Andtechnol. 1984;5(1):49–59.

    Article  CAS  Google Scholar 

  • Maranhao RC, Graziani SR, Yamaguchi N, Melo RF, Latrilha MC, Rodrigues DG, Couto RD, Schreier S, Buzaid AC. Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol. 2002;49(6):487–98.

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Bala K. Phase behavior, structural effects, and volumetric and transport properties in nonaqueous microemulsions. Phys Rev E. 1999;59(4):4317.

    Article  CAS  Google Scholar 

  • Nakajima H, Tomomasa S, Okabe M. Proceedings of first world emulsion conference, vol. 1. Paris: EDS; 1993. p. 1–11.

    Google Scholar 

  • Nishikawa M, Takakura Y, Hashida M. Biofate of fat emulsions. In: Submicron emulsions in drug targeting and delivery, vol. 9. Amsterdam: Harwood Academic Publisher; 1998. p. 99–118.

    Google Scholar 

  • Pinnamaneni S, Das NG, Das SK. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Die Pharmazie. 2003;58(8):554–8.

    CAS  PubMed  Google Scholar 

  • Prete ACL, Maria DA, Rodrigues DBG, Valduga CJ, Ibañez OC, Maranhão RC. Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nanoemulsion. J Pharm Pharmacol. 2006;58(6):801–8.

    Article  PubMed  CAS  Google Scholar 

  • Rani S, Rana R, Saraogi GK, Kumar V, Gupta U. Self-emulsifying oral lipid drug delivery systems: advances and challenges. AAPS PharmSciTech. 2019;20(3):129.

    Article  CAS  PubMed  Google Scholar 

  • Redgrave TG, Rakic V, Mortimer BC, Mamo JC. Effects of sphingomyelin and phosphatidylcholine acyl chains on the clearance of triacylglycerol-rich lipoproteins from plasma. Studies with lipid emulsions in rats. Biochim Biophys Acta. 1992;1126(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  • Rieger MM. Emulsions. In: Lachman L, Lieberman H, Kanig J, editors. The theory and practice of industrial pharmacy. 3rd ed. Philadelphia: Lea & Febiger; 1986. p. 502–32.

    Google Scholar 

  • Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhão RC. Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol. 2002;54(6):765–72.

    Article  CAS  PubMed  Google Scholar 

  • Rosoff M. Specialized pharmaceutical emulsions. In: Lieberman HA, Rieger MM, Banker GS, editors. Pharmaceutical dosage forms: disperse systems. 2nd ed. New York: Marcel Dekker, Inc.; 1996. p. 1–35.

    Google Scholar 

  • Russel WB, Russel WB, Saville DA, Schowalter WR. Colloidal dispersions. New York: Cambridge University Press; 1991.

    Google Scholar 

  • Salager JL. Formulation concepts for the emulsion maker. In: Nielloud F, Mart-Mestres G, editors. Pharmaceutical emulsions and suspensions. New York: Marcel Dekker, Inc.; 2000. p. 19–68.

    Chapter  Google Scholar 

  • Shinoda K, Araki M, Sadaghiani A, Khan A, Lindman B. Lecithin-based microemulsions: phase behavior and microstructure. J Phys Chem. 1991;95(2):989–93.

    Article  CAS  Google Scholar 

  • Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.

    Article  CAS  PubMed  Google Scholar 

  • Solans C, Solé I. Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci. 2012;17(5):246–54.

    Article  CAS  Google Scholar 

  • Terek MC, Karabulut B, Selvi N, Akman L, Karasulu Y, Ozguney I, Sanli AU, Uslu R, Ozsaran A. Arsenic trioxide–loaded, microemulsion-enhanced cytotoxicity on MDAH 2774 ovarian carcinoma cell line. Int J Gynecol Cancer. 2006;16(2):532–7.

    Article  CAS  PubMed  Google Scholar 

  • Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56(16):3626–9.

    CAS  PubMed  Google Scholar 

  • Yeşim Karasulu H, Karabulut B, Kantarci G, Özgüney I, Sezgin C, Sanli UA, Göker E. Preparation of arsenic trioxide-loaded microemulsion and its enhanced cytotoxicity on MCF-7 breast carcinoma cell line. Drug Deliv. 2004;11(6):345–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict Statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafique, S., Das, N.G., Das, S.K. (2021). Nanoemulsions: An Emerging Technology in Drug Delivery. In: Patel, J.K., Pathak, Y.V. (eds) Emerging Technologies for Nanoparticle Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-50703-9_17

Download citation

Publish with us

Policies and ethics