Skip to main content

Dural Arteriovenous Fistulas

  • Chapter
  • First Online:
CyberKnife NeuroRadiosurgery
  • 677 Accesses

Abstract

Dural arteriovenous fistulas (DAVFs) are pathological, direct transcranial connections from extracranial arteries to intracranial venous sinuses or veins. DAVFs may lead to cortical venous reflux with supraphysiological flow and may subsequently rupture causing intracerebral, subarachnoidal, or subdural hemorrhages. Stereotactic radiosurgery (SRS) represents a valid option for selected DAVF cases. Overall, SRS leads to complete occlusion of the DAVF in approximately 60% of cases, (range 40–95%), at a follow-up ranging from 1 to 5 years.

Indications for SRS in the treatment of DAVFs are prevention of intracranial hemorrhage from DAVFs with cortical venous reflux and relieving intolerable tinnitus. However, unlike endovascular or microsurgical occlusion of DAVFs that provide immediate therapeutic effect, the therapeutic effect of SRS on the DAVFs comes with a delay ranging from several months to several years, subsequently exposing the patient to hemorrhage. Therefore, SRS should not be considered as the treatment of choice for ruptured DAVFs unless endovascular or microsurgical occlusion is unfeasible or markedly risky. The optimal margin dose is 18–20 Gy given in one single fraction, but this should be adapted to DAVF volume and location. In DAVFs with a volume larger than 10 cm3, we have considered fractionated SRS with a schedule of 5Gy/fraction × 6 fractions or volume staging in which subvolumes of the DAVF are treated with a single fraction of 20–18Gy sequentially. In large DAVFs, pretreatment downsizing of the DAVF with embolization or partial DAVF treatment followed by embolization of the residual malformation can be also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrow DL, Spector RH, Braun IF, Landman JA, Tindall SC, Tindall GT. Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg. 1985;62:248–56.

    CAS  PubMed  Google Scholar 

  2. Hacein-Bey L, Konstas AA, Pile-Spellman J. Natural history, current concepts, classification, factors impacting endovascular therapy, and pathophysiology of cerebral and spinal dural arteriovenous fistulas. Clin Neurol Neurosurg. 2014;121:64–75.

    PubMed  Google Scholar 

  3. Wanke I, Rüfenacht DA. The dural AV-fistula (DAVF), the most frequent acquired vascular malformation of the central nervous system (CNS). Clin Neuroradiol. 2015;25(Suppl 2):325–32.

    PubMed  Google Scholar 

  4. Ohshima T, Tamari Y, Yamamoto T, Goto S, Ishikawa K. Midterm follow-up of 20 consecutive patients with nonaneurysmal subarachnoid hemorrhage of unknown origin in a single-center: two cases of de novo development of dural arteriovenous fistula. J Stroke Cerebrovasc Dis. 2017;26:2788–92.

    PubMed  Google Scholar 

  5. Preter M, Tzourio C, Ameri A, Bousser MG. Long-term prognosis in cerebral venous thrombosis. Follow-up of 77 patients. Stroke. 1996;27:243–6.

    CAS  PubMed  Google Scholar 

  6. Orina JN, Daniels DJ, Lanzino G. Familial intracranial dural arteriovenous fistulas. Neurosurgery. 2013;72:E310–33.

    PubMed  Google Scholar 

  7. Kraus JA, Stüper BK, Berlit P. Association of resistance to activated protein C and dural arteriovenous fistulas. J Neurol. 1998;245:731–3.

    CAS  PubMed  Google Scholar 

  8. Aiello G, Rinaldo L, Marshall AL, Vine RL, Lanzino G. Incidence of hereditary thrombophilia in patients with cranial dural arteriovenous fistulae. J Clin Neurosci. 2020;S0967-5868(19):32044–2. [Epub ahead of print].

    Google Scholar 

  9. Izumi T, Miyachi S, Hattori K, Iizuka H, Nakane Y, Yoshida J. Thrombophilic abnormalities among patients with cranial dural arteriovenous fistulas. Neurosurgery. 2007;61:262–8.

    PubMed  Google Scholar 

  10. Gerlach R, Yahya H, Rohde S, Böhm M, Berkefeld J, Scharrer I, Seifert V, Raabe A. Increased incidence of thrombophilic abnormalities in patients with cranial dural arteriovenous fistulae. Neurol Res. 2003;25:745–8.

    PubMed  Google Scholar 

  11. Hiramatsu M, Sugiu K, Hishikawa T, Haruma J, Tokunaga K, Date I, Kuwayama N, Sakai N. Epidemiology of dural arteriovenous fistula in Japan: analysis of Japanese registry of neuroendovascular therapy (JR-NET2). Neurol Med Chir (Tokyo). 2014;54(Suppl 2):63–71.

    Google Scholar 

  12. Kuwayama N. Epidemiologic survey of dural arteriovenous fistulas in Japan: clinical frequency and present status of treatment. Acta Neurochir Suppl. 2016;123:185–8.

    PubMed  Google Scholar 

  13. Kannath SK, Rajan JE, Mukherjee A, Sarma PS. Factors predicting spontaneous thrombosis of aggressive cranial dural arteriovenous fistulas. World Neurosurg. 2017;103:821–8.

    PubMed  Google Scholar 

  14. Yen CP, Khaled MA, Schwyzer L, Vorsic M, Dumont AS, Steiner L. Early draining vein occlusion after gamma knife surgery for arteriovenous malformations. Neurosurgery. 2010;67:1293–302.

    PubMed  Google Scholar 

  15. Shah MN, Botros JA, Pilgram TK, Moran CJ, Cross DT 3rd, Chicoine MR, Rich KM, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Borden-shucart type I dural arteriovenous fistulas: clinical course including risk of conversion to higher-grade fistulas. J Neurosurg. 2012;117:539–45.

    PubMed  Google Scholar 

  16. Cognard C, Houdart E, Casasco A, Gabrillargues J, Chiras J, Merland JJ. Long-term changes in intracranial dural arteriovenous fistulae leading to worsening in the type of venous drainage. Neuroradiology. 1997;39:59–66.

    CAS  PubMed  Google Scholar 

  17. In ‘t Veld M, Fronczek R, de Laat JA, Kunst HPM, Meijer FJA, Willems PWA. The incidence of cranial arteriovenous shunts in patients with pulsatile tinnitus: a prospective observational study. Otol Neurotol. 2018;39:648–53.

    PubMed  Google Scholar 

  18. Cognard C, Casasco A, Toevi M, Houdart E, Chiras J, Merland JJ. Dural arteriovenous fistulas as a cause of intracranial hypertension due to impairment of cranial venous outflow. J Neurol Neurosurg Psychiatry. 1998;65:308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown RD Jr, Wiebers DO, Nichols DA. Intracranial dural arteriovenous fistulae: angiographic predictors of intracranial hemorrhage and clinical outcome in nonsurgical patients. J Neurosurg. 1994;81:531–8.

    PubMed  Google Scholar 

  20. Cognard C, Gobin YP, Pierot L, Bailly AL, Houdart E, Casasco A, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194:671–80.

    CAS  PubMed  Google Scholar 

  21. van Dijk JM, ter Brugge KG, Willinsky RA, Wallace MC. Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke. 2002;33:1233–6.

    PubMed  Google Scholar 

  22. Söderman M, Pavic L, Edner G, Holmin S, Andersson T. Natural history of dural arteriovenous shunts. Stroke. 2008;39:1735–9.

    PubMed  Google Scholar 

  23. Strom RG, Botros JA, Refai D, Moran CJ, Cross DT III, Chicoine MR, et al. Cranial dural arteriovenous fistulae: asymptomatic cortical venous drainage portends less aggressive clinical course. Neurosurgery. 2009;64:241–8.

    PubMed  Google Scholar 

  24. Satomi J, Ghaibeh AA, Moriguchi H, Nagahiro S. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis. J Neurosurg. 2015;123:86–90.

    PubMed  Google Scholar 

  25. Gross BA, Albuquerque FC, McDougall CG, Jankowitz BT, Jadhav AP, Jovin TG, Du R. A multi-institutional analysis of the untreated course of cerebral dural arteriovenous fistulas. J Neurosurg. 2018;129:1114–9.

    PubMed  Google Scholar 

  26. Fassett DR, Rammos SK, Patel P, Parikh H, Couldwell WT. Intracranial subarachnoid hemorrhage resulting from cervical spine dural arteriovenous fistulas: literature review and case presentation. Neurosurg Focus. 2009;26:E4.

    PubMed  Google Scholar 

  27. Atkinson JL, Miller GM, Krauss WE, Marsh WR, Piepgras DG, Atkinson PP, Brown RD Jr, Lane JI. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc. 2001;76:1120–30.

    CAS  PubMed  Google Scholar 

  28. Hiramatsu M, Sugiu K, Hishikawa T, Nishihiro S, Kidani N, Takahashi Y, Murai S, Date I, Kuwayama N, Satow T, Iihara K, Sakai N. Results of 1940 embolizations for dural arteriovenous fistulas: Japanese registry of neuroendovascular therapy (JR-NET3). J Neurosurg. 2019;28:1–8.

    Google Scholar 

  29. Sugiyama T, Nakayama N, Ushikoshi S, et al. Complication rate, cure rate, and long-term outcomes of microsurgery for intracranial dural arteriovenous fistulae: a multicenter series and systematic review. Neurosurg Rev. 2020. [published online ahead of print, 2020 Jan 2]. https://doi.org/10.1007/s10143-019-01232-y.

  30. Wachter D, Hans F, Psychogios MN, Knauth M, Rohde V. Microsurgery can cure most intracranial dural arteriovenous fistulae of the sinus and non-sinus type. Neurosurg Rev. 2011;34:337–45.

    PubMed  PubMed Central  Google Scholar 

  31. Dützmann S, Beck J, Gerlach R, Bink A, Berkefeld J, du Mesnil de Rochement R, Seifert V, Raabe A. Management, risk factors and outcome of cranial dural arteriovenous fistulae: a single-center experience. Acta Neurochir. 2011;153:1273–81.

    PubMed  Google Scholar 

  32. Starke RM, McCarthy DJ, Chen CJ, et al. Hemorrhage risk of cerebral dural arteriovenous fistulas following Gamma Knife radiosurgery in a multicenter international consortium. J Neurosurg. 2019;1–9. [published online ahead of print, 2019 Mar 15]. https://doi.org/10.3171/2018.12.JNS182208.

  33. Mohammed N, Hung YC, Xu Z, Starke RM, Kano H, Lee J, Mathieu D, Kaufmann AM, Grills IS, Cifarelli CP, Vargo JA, Chytka T, Janouskova L, Feliciano CE, Mercado RR, Lunsford LD, Sheehan JP. A propensity score-matched cohort analysis of outcomes after stereotactic radiosurgery in older versus younger patients with dural arteriovenous fistula: an international multicenter study. World Neurosurg. 2019;125:e1114–24.

    PubMed  PubMed Central  Google Scholar 

  34. Barcia-Salorio JL, Soler F, Barcia JA, Hernández G. Stereotactic radiosurgery for the treatment of low-flow carotid-cavernous fistulae: results in a series of 25 cases. Stereotact Funct Neurosurg. 1994;63:266–70.

    CAS  PubMed  Google Scholar 

  35. Park SH, Park KS, Kang DH, Hwang JH, Hwang SK. Stereotactic radiosurgery for intracranial dural arteriovenous fistulas: its clinical and angiographic perspectives. Acta Neurochir. 2017;159:1093–103.

    PubMed  Google Scholar 

  36. Hung YC, Mohammed N, Kearns KN, Chen CJ, Starke RM, Kano H, Lee J, Mathieu D, Kaufmann AM, Wang WG, Grills IS, Cifarelli CP, Vargo J, Chytka T, Janouskova L, Feliciano CE, Rodriguez-Mercado R, Lunsford LD, Sheehan JP. Stereotactic radiosurgery for cavernous sinus versus noncavernous sinus dural arteriovenous fistulas: outcomes and outcome predictors. Neurosurgery. 2020;86(5):676–84.

    PubMed  Google Scholar 

  37. Pan DH, Wu HM, Kuo YH, Chung WY, Lee CC, Guo WY. Intracranial dural arteriovenous fistulas: natural history and rationale for treatment with stereotactic radiosurgery. Prog Neurol Surg. 2013;27:176–94.

    PubMed  Google Scholar 

  38. Xu F, Zhong J, Ray A, Manjila S, Bambakidis NC. Stereotactic radiosurgery with and without embolization for intracranial arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Focus. 2014;37:E16.

    PubMed  Google Scholar 

  39. Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci. 2019;76:699–728.

    CAS  PubMed  Google Scholar 

  40. Fernández-Alvarez V, López F, Suárez C, Strojan P, Eisbruch A, Silver CE, Mendenhall WM, Langendijk JA, Rinaldo A, Lee AWM, Beitler JJ, Smee R, Alvarez J, Ferlito A. Radiation-induced carotid artery lesions. Strahlenther Onkol. 2018;194:699–710.

    PubMed  Google Scholar 

  41. Saunders WM, Winston KR, Siddon RL, Svensson GH, Kijewski PK, Rice RK, Hansen JL, Barth NH. Radiosurgery for arteriovenous malformations of the brain using astandard linear accelerator: rationale and technique. Int J Radiat Oncol Biol Phys. 1998;15:441–7.

    Google Scholar 

  42. Graffeo CS, Sahgal A, De Salles A, et al. Stereotactic Radiosurgery for Spetzler-Martin Grade I and II Arteriovenous Malformations: International Society of Stereotactic Radiosurgery (ISRS) Practice Guideline. Neurosurgery. 2020;nyaa004. [published online ahead of print, 2020 Feb 17].

    Google Scholar 

  43. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, Khyzha N, DiStefano PV, Suutarinen S, Kiehl TR, Mendes Pereira V, Herman AM, Krings T, Andrade-Barazarte H, Tung T, Valiante T, Zadeh G, Tymianski M, Rauramaa T, Ylä-Herttuala S, Wythe JD, Antonarakis SE, Frösen J, Fish JE, Radovanovic I. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med. 2018;378:250–61.

    CAS  PubMed  Google Scholar 

  44. Pollock BE, Kline RW, Stafford SL, Foote RL, Schomberg PJ. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 2000;48:817–24.

    CAS  PubMed  Google Scholar 

  45. Zhong J, Press RH, Olson JJ, Oyesiku NM, Shu HG, Eaton BR. The use of hypofractionated radiosurgery for the treatment of intracranial lesions unsuitable for single-fraction radiosurgery. Neurosurgery. 2018;83:850–7.

    PubMed  Google Scholar 

  46. Statham P, Macpherson P, Johnston R, Forster DM, Adams JH, Todd NV. Cerebral radiation necrosis complicating stereotactic radiosurgery for arteriovenous malformation. J Neurol Neurosurg Psychiatry. 1990;53:476–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Starke RM, McCarthy DJ, Chen CJ, Kano H, McShane B, Lee J, Mathieu D, Vasas LT, Kaufmann AM, Wang WG, Grills IS, Patibandla MR, Cifarelli CP, Paisan G, Vargo JA, Chytka T, Janouskova L, Feliciano CE, Rodriguez-Mercado R, Tonetti DA, Lunsford LD, Sheehan JP. Evaluation of stereotactic radiosurgery for cerebral dural arteriovenous fistulas in a multicenter international consortium. J Neurosurg. 2019;132(1):114–21.

    PubMed  Google Scholar 

  48. Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res. 2013;50:445–57.

    PubMed  PubMed Central  Google Scholar 

  49. Steinvorth S, Wenz F, Wildermuth S, Essig M, Fuss M, Lohr F, Debus J, Wannenmacher M, Hacke W. Cognitive function in patients with cerebral arteriovenous malformations after radiosurgery: prospective long-term follow-up. Int J Radiat Oncol Biol Phys. 2002;54:1430–7.

    PubMed  Google Scholar 

  50. Riva D, Pantaleoni C, Devoti M, Lindquist C, Steiner L, Giorgi C. Radiosurgery for cerebral AVMs in children and adolescents: the neurobehavioral outcome. J Neurosurg. 1997;86:207–10.

    CAS  PubMed  Google Scholar 

  51. Murray AL, Dally M, Jeffreys A, Hwang P, Anderson JF. Neuropsychological outcomes of stereotactic radiotherapy for cerebral arteriovenous malformations. J Clin Neurosci. 2014;21:601–6.

    PubMed  Google Scholar 

  52. Duffau H, Lopes M, Janosevic V, Sichez JP, Faillot T, Capelle L, et al. Early rebleeding from intracranial dural arteriovenous fistulas: report of 20 cases and review of the literature. J Neurosurg. 1999;90:78–84.

    CAS  PubMed  Google Scholar 

  53. Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82:166–79. (Erratum in J Neurosurg 82:705–706, 1995).

    CAS  PubMed  Google Scholar 

  54. Baek HG, Park SH, Park KS, Kang DH, Hwang JH, Hwang SK. Stereotactic radiosurgery for dural arteriovenous fistulas involving the transverse-sigmoid sinus: a single center experience and review of the literatures. J Korean Neurosurg Soc. 2019;62:458–66.

    PubMed  PubMed Central  Google Scholar 

  55. Chen CJ, Buell TJ, Diamond J, Ding D, Kumar JS, Taylor DG, Lee CC, Sheehan JP. Stereotactic radiosurgery for high-grade intracranial dural arteriovenous fistulas. World Neurosurg. 2018;116:e640–8.

    PubMed  Google Scholar 

  56. Seo Y, Kim DG, Dho YS, Kim JW, Kim YH, Park CK, Chung HT, Paek SH. A retrospective analysis of the outcomes of dural arteriovenous fistulas treated with gamma knife radiosurgery: a single-institution experience. Stereotact Funct Neurosurg. 2018;96:46–53.

    PubMed  Google Scholar 

  57. Tonetti DA, Gross BA, Jankowitz BT, Atcheson KM, Kano H, Monaco EA, Niranjan A, Lunsford LD. Stereotactic radiosurgery for dural arteriovenous fistulas without cortical venous reflux. World Neurosurg. 2017;107:371–5.

    PubMed  Google Scholar 

  58. Lee CC, Chen CJ, Chen SC, Yang HC, Lin CJ, Wu CC, Chung WY, Guo WY, Hung-Chi Pan D, Shiau CY, Wu HM. Gamma Knife surgery for clival epidural-osseous dural arteriovenous fistulas. J Neurosurg. 2018;128:1364–71.

    PubMed  Google Scholar 

  59. Dmytriw AA, Schwartz ML, Cusimano MD, Mendes Pereira V, Krings T, Tymianski M, Radovanovic I, Agid R. Gamma knife radiosurgery for the treatment of intracranial dural arteriovenous fistulas. Interv Neuroradiol. 2017;23:211–20.

    PubMed  Google Scholar 

  60. Park KS, Kang DH, Park SH, Kim YS. The efficacy of gamma knife radiosurgery alone as a primary treatment for intracranial dural arteriovenous fistulas. Acta Neurochir. 2016;158:821–8.

    PubMed  Google Scholar 

  61. Söderman M, Dodoo E, Karlsson B. Dural arteriovenous fistulas and the role of gamma knife stereotactic radiosurgery: the Stockholm experience. Prog Neurol Surg. 2013;27:205–17.

    PubMed  Google Scholar 

  62. Hanakita S, Koga T, Shin M, Shojima M, Igaki H, Saito N. Role of Gamma Knife surgery in the treatment of intracranial dural arteriovenous fistulas. J Neurosurg. 2012;117(Suppl):158–63.

    PubMed  Google Scholar 

  63. Yang HC, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Horowitz MB, et al. Stereotactic radiosurgery with or without embolization for intracranial dural arteriovenous fistulas. Neurosurgery. 2010;67:1276–85.

    PubMed  Google Scholar 

  64. Cifarelli CP, Kaptain G, Yen CP, Schlesinger D, Sheehan JP. Gamma knife radiosurgery for dural arteriovenous fistulas. Neurosurgery. 2010;67:1230–5.

    PubMed  Google Scholar 

  65. Kida Y. Radiosurgery for dural arteriovenous fistula. Prog Neurol Surg. 2009;22:38–44.

    PubMed  Google Scholar 

  66. Söderman M, Edner G, Ericson K, Karlsson B, Rähn T, Ulfarsson E, et al. Gamma knife surgery for dural arteriovenous shunts: 25 years of experience. J Neurosurg. 2006;104:867–75.

    PubMed  Google Scholar 

  67. Koebbe CJ, Singhal D, Sheehan J, Flickinger JC, Horowitz M, Kondziolka D, et al. Radiosurgery for dural arteriovenous fistulas. Surg Neurol. 2005;64:392–9.

    PubMed  Google Scholar 

  68. O’Leary S, Hodgson TJ, Coley SC, Kemeny AA, Radatz MW. Intracranial dural arteriovenous malformations: results of stereotactic radiosurgery in 17 patients. Clin Oncol (R Coll Radiol). 2002;14:97–102.

    Google Scholar 

  69. Pan DH, Chung WY, Guo WY, Wu HM, Liu KD, Shiau CY, et al. Stereotactic radiosurgery for the treatment of dural arteriovenous fistulas involving the transverse-sigmoid sinus. J Neurosurg. 2002;96:823–9.

    PubMed  Google Scholar 

  70. Friedman JA, Pollock BE, Nichols DA, Gorman DA, Foote RL, Stafford SL. Results of combined stereotactic radiosurgery and transarterial embolization for dural arteriovenous fistulas of the transverse and sigmoid sinuses. J Neurosurg. 2001;94:886–91.

    CAS  PubMed  Google Scholar 

  71. Pollock BE, Nichols DA, Garrity JA, Gorman DA, Stafford SL. Stereotactic radiosurgery and particulate embolization for cavernous sinus dural arteriovenous fistulae. Neurosurgery. 1999;45:459–67.

    CAS  PubMed  Google Scholar 

  72. Wu CA, Yang HC, Hu YS, Wu HM, Lin CJ, Luo CB, Guo WY, Lee CC, Liu KD, Chung WY. Venous outflow restriction as a predictor of cavernous sinus dural arteriovenous fistula obliteration after gamma knife surgery. J Neurosurg. 2019;25:1–8. [Epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhana Frösen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frösen, J., Lindgren, A. (2020). Dural Arteriovenous Fistulas. In: Conti, A., Romanelli, P., Pantelis, E., Soltys, S., Cho, Y., Lim, M. (eds) CyberKnife NeuroRadiosurgery . Springer, Cham. https://doi.org/10.1007/978-3-030-50668-1_45

Download citation

Publish with us

Policies and ethics