Skip to main content

Targeting Leukotrienes as a Therapeutic Strategy to Prevent Comorbidities Associated with Metabolic Stress

  • Chapter
  • First Online:
Druggable Lipid Signaling Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1274))

Abstract

Leukotrienes (LTs) are potent lipid mediators that exert a variety of functions, ranging from maintaining the tone of the homeostatic immune response to exerting potent proinflammatory effects. Therefore, LTs are essential elements in the development and maintenance of different chronic diseases, such as asthma, arthritis, and atherosclerosis. Due to the pleiotropic effects of LTs in the pathogenesis of inflammatory diseases, studies are needed to discover potent and specific LT synthesis inhibitors and LT receptor antagonists. Even though most clinical trials using LT inhibitors or antagonists have failed due to low efficacy and/or toxicity, new drug development strategies are driving the discovery for LT inhibitors to prevent inflammatory diseases. A newly important detrimental role for LTs in comorbidities associated with metabolic stress has emerged in the last few years and managing LT production and/or actions could represent an exciting new strategy to prevent or treat inflammatory diseases associated with metabolic disorders. This review is intended to shed light on the synthesis and actions of leukotrienes, the most common drugs used in clinical trials, and discuss the therapeutic potential of preventing LT function in obesity, diabetes, and hyperlipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harkavy J (1930) Spam-producing substance in the sputum of patiensts with bronchial asthma. Arch Intern Med 45:641

    CAS  Google Scholar 

  2. Kellaway C, Trethewie E (1940) The liberation of a slow-reacting smooth muscle-stimulating substance in anaphylaxis. Q J Exp Physiol Cogn Med Sci 30:121–145

    CAS  Google Scholar 

  3. Feldberg W, Kellaway CH (1938) Liberation of histamine and formation of lysocithin-like substances by cobra venom. J Physiol 94:187–226

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brocklehurst W (1960) The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock. J Physiol 151:416–435

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Orange RP, Murphy RC, Karnovsky ML, Austen KF (1973) The physicochemical characteristics and purification of slow-reacting substance of anaphylaxis. J Immunol 110:760–770

    CAS  PubMed  Google Scholar 

  6. Morris HR, Taylor GW (1978) Slow-reacting substance of anaphylaxis purification and characterisation. FEBS Lett 87:203–206

    CAS  PubMed  Google Scholar 

  7. Murphy RC, Hammarström S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci 76:4275–4279

    CAS  PubMed  Google Scholar 

  8. Hammarström S, Murphy RC, Samuelsson B, Clark DA, Mioskowski C, Corey E (1979) Structure of leukotriene C identification of the amino acid part. Biochem Biophys Res Commun 91:1266–1272

    PubMed  Google Scholar 

  9. Samuelsson B, Borgeat P, Hammarström S, Murphy R (1979) Introduction of a nomenclature: leukotrienes. Prostaglandins 17:785–787

    CAS  PubMed  Google Scholar 

  10. Borgeat P, Samuelsson B (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci 76:2148–2152

    CAS  PubMed  Google Scholar 

  11. Borgeat P, Samuelsson B (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci 76:3213–3217

    CAS  PubMed  Google Scholar 

  12. Fitzpatrick FA, Soberman R (2001) Regulated formation of eicosanoids. J Clin Invest 107:1347–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leslie CC (2015) Cytosolic phospholipase A2: physiological function and role in disease. J Lipid Res 56:1386–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rådmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851:331–339

    PubMed  Google Scholar 

  16. Evans JF, Ferguson AD, Mosley RT, Hutchinson JH (2008) What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci 29:72–78

    CAS  PubMed  Google Scholar 

  17. Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357:1841–1854

    CAS  PubMed  Google Scholar 

  18. Peters-Golden M, Gleason MM, Togias A (2006) Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy 36:689–703

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Werz O (2002) 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy 1:23–44

    CAS  PubMed  Google Scholar 

  20. Liu M, Yokomizo T (2015) The role of leukotrienes in allergic diseases. Allergol Int 64:17–26

    CAS  PubMed  Google Scholar 

  21. Kanaoka Y, Austen KF (2019) Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol 142:65–84

    CAS  PubMed  Google Scholar 

  22. Nolfo R, Rankin JA (1990) U937 and THP-1 cells do not release LTB4, LTC4, or LTD4 in response to A23187. Prostaglandins 39:157–165

    CAS  PubMed  Google Scholar 

  23. Sala A, Folco G, Murphy RC (2010) Transcellular biosynthesis of eicosanoids. Pharmacol Rep 62:503–510

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McGee JE, Fitzpatrick FA (1986) Erythrocyte-neutrophil interactions: formation of leukotriene B4 by transcellular biosynthesis. Proc Natl Acad Sci U S A 83:1349–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iversen L, Fogh K, Ziboh VA, Kristensen P, Schmedes A, Kragballe K (1993) Leukotriene B4 formation during human neutrophil keratinocyte interactions: evidence for transformation of leukotriene A4 by putative keratinocyte leukotriene A4 hydrolase. J Invest Dermatol 100:293–298

    CAS  PubMed  Google Scholar 

  26. Breton J, Woolf D, Young P, Chabot-Fletcher M (1996) Human keratinocytes lack the components to produce leukotriene B4. J Invest Dermatol 106:162–167

    CAS  PubMed  Google Scholar 

  27. Janssen-Timmen U, Vickers PJ, Wittig U, Lehmann WD, Stark HJ, Fusenig NE, Rosenbach T, Radmark O, Samuelsson B, Habenicht AJ (1995) Expression of 5-lipoxygenase in differentiating human skin keratinocytes. Proc Natl Acad Sci U S A 92:6966–6970

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feinmark SJ (1992) The role of the endothelial cell in leukotriene biosynthesis. Am Rev Respir Dis 146:S51–S55

    CAS  PubMed  Google Scholar 

  29. Peters-Golden M, Brock TG (2001) 5-Lipoxygenase and the nucleus: where, when, how, and why? In: Samuelsson B, Paoletti R, Folco GC, Granström E, Nicosia S (eds) Advances in Prostaglandin and Leukotriene research: basic science and new clinical applications. Springer Netherlands, Dordrecht, pp 9–15

    Google Scholar 

  30. Glover S, de Carvalho MS, Bayburt T, Jonas M, Chi E, Leslie CC, Gelb MH (1995) Translocation of the 85-kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J Biol Chem 270:15359–15367

    CAS  PubMed  Google Scholar 

  31. Peters-Golden M, McNish RW (1993) Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun 196:147–153

    CAS  PubMed  Google Scholar 

  32. Woods JW, Coffey MJ, Brock TG, Singer II, Peters-Golden M (1995) 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation. J Clin Invest 95:2035–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters-Golden M (1998) Cell biology of the 5-lipoxygenase pathway. Am J Respir Crit Care Med 157:S227–S231; discussion S231-222, S247-228

    PubMed  Google Scholar 

  34. Canetti C, Hu B, Curtis JL, Peters-Golden M (2003) Syk activation is a leukotriene B4-regulated event involved in macrophage phagocytosis of IgG-coated targets but not apoptotic cells. Blood 102:1877–1883

    CAS  PubMed  Google Scholar 

  35. Brandt SL, Serezani CH (2017) Too much of a good thing: how modulating LTB4 actions restore host defense in homeostasis or disease. Semin Immunol 33:37–43

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gosselin J, Borgeat P (1997) Epstein-Barr virus modulates 5-lipoxygenase product synthesis in human peripheral blood mononuclear cells. Blood 89:2122–2130

    CAS  PubMed  Google Scholar 

  37. Grone M, Scheffer J, Konig W (1992) Modulation of leukotriene generation by invasive bacteria. Immunology 77:400–407

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brock TG, Peters-Golden M (2007) Activation and regulation of cellular eicosanoid biosynthesis. ScientificWorldJournal 7:1273–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Radmark O, Samuelsson B (2009) 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 50(Suppl):S40–S45

    PubMed  PubMed Central  Google Scholar 

  40. Zaman K, Hanigan MH, Smith A, Vaughan J, Macdonald T, Jones DR, Hunt JF, Gaston B (2006) Endogenous S-nitrosoglutathione modifies 5-lipoxygenase expression in airway epithelial cells. Am J Respir Cell Mol Biol 34:387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bruno F, Spaziano G, Liparulo A, Roviezzo F, Nabavi SM, Sureda A, Filosa R, D’Agostino B (2018) Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur J Med Chem 153:65–72

    CAS  PubMed  Google Scholar 

  42. McGill KA, Busse WW (1996) Zileuton. Lancet 348:519–524

    CAS  PubMed  Google Scholar 

  43. Dubé LM, Swanson LJ, Awni W (1999) Zileuton, a leukotriene synthesis inhibitor in the management of chronic asthma. Clinical pharmacokinetics and safety. Clin Rev Allergy Immunol 17:213–221

    PubMed  Google Scholar 

  44. Ducharme Y, Blouin M, Brideau C, Châteauneuf A, Gareau Y, Grimm EL, Juteau H, Laliberté S, MacKay B, Massé F (2010) The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. ACS Med Chem Lett 1:170–174

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ford-Hutchinson AW, Gresser M, Young RN (1994) 5-Lipoxygenase. Annu Rev Biochem 63:383–417

    CAS  PubMed  Google Scholar 

  46. Friedman BS, Bel EH, Buntinx A, Tanaka W, Han YH, Shingo S, Spector R, Sterk P (1993) Oral leukotriene inhibitor (MK-886) blocks allergen-induced airway responses. Am Rev Respir Dis 147:839–844

    CAS  PubMed  Google Scholar 

  47. Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ (1999) Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomark Prev 8:467–483

    CAS  Google Scholar 

  48. Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR, Evans JF, Becker JW (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317:510–512

    CAS  PubMed  Google Scholar 

  49. NCT00353067, C. g. Veliflapon (DG-031) o prevent heart attackes or smoke in patients with a history of heart attack or unstable angina. https://clinicaltrials.gov/ct2/show/NCT00353067

  50. Stsiapanava A, Samuelsson B, Haeggström JZ (2017) Capturing LTA. Proc Natl Acad Sci U S A 114:9689–9694

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhatt L, Roinestad K, Van T, Springman EB (2017) Recent advances in clinical development of leukotriene B4 pathway drugs. Semin Immunol 33:65–73

    CAS  PubMed  Google Scholar 

  52. NCT03964558, C. g. I. Mass balance recovery, metabolite, profile and metabolite identification of Acebilustat. https://clinicaltrials.gov/ct2/show/NCT03964558

  53. NCT02443688, C. g. I. EMPIRE CF: A Phase 2 study to evaluate the efficacy, safety and tolerability of CTX-4430 in adult cystic fibrosis patients <p class=“MsoNormal” style=“margin-bottom:0cm;margin-bottom:.0001pt;text-align: justify; line-height:150%”>. https://clinicaltrials.gov/ct2/show/results/NCT02443688#wrapper

  54. NCT02385760, C. g. I. CTX-4430 for the treatment of moderate to severe facial Acne vulgaris. https://clinicaltrials.gov/ct2/show/NCT02385760

  55. Kanaoka Y, Boyce JA (2004) Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. J Immunol 173:1503–1510

    CAS  PubMed  Google Scholar 

  56. Parameswaran K, Liang H, Fanat A, Watson R, Snider DP, O’Byrne PM (2004) Role for cysteinyl leukotrienes in allergen-induced change in circulating dendritic cell number in asthma. J Allergy Clin Immunol 114:73–79

    CAS  PubMed  Google Scholar 

  57. Stelmach I, Bobrowska-Korzeniowska M, Majak P, Stelmach W, Kuna P (2005) The effect of montelukast and different doses of budesonide on IgE serum levels and clinical parameters in children with newly diagnosed asthma. Pulm Pharmacol Ther 18:374–380

    CAS  PubMed  Google Scholar 

  58. Gounaris E, Heiferman MJ, Heiferman JR, Shrivastav M, Vitello D, Blatner NR, Knab LM, Phillips JD, Cheon EC, Grippo PJ, Khazaie K, Munshi HG, Bentrem DJ (2015) Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation. PLoS One 10:e0121402

    PubMed  PubMed Central  Google Scholar 

  59. Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288:10967–10972

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im D-S, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275:30531–30536

    CAS  PubMed  Google Scholar 

  61. Kanaoka Y, Boyce JA (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6:288–295

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Okunishi K, Dohi M, Nakagome K, Tanaka R, Yamamoto K (2004) A novel role of cysteinyl leukotrienes to promote dendritic cell activation in the antigen-induced immune responses in the lung. J Immunol 173:6393–6402

    CAS  PubMed  Google Scholar 

  63. Austen KF, Maekawa A, Kanaoka Y, Boyce JA (2009) The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J Allergy Clin Immunol 124:406–414; quiz 415-406

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Foster HR, Fuerst E, Lee TH, Cousins DJ, Woszczek G (2013) Characterisation of P2Y(12) receptor responsiveness to cysteinyl leukotrienes. PLoS One 8:e58305

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bankova LG, Lai J, Yoshimoto E, Boyce JA, Austen KF, Kanaoka Y, Barrett NA (2016) Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein-coupled receptor, GPR99. Proc Natl Acad Sci U S A 113:6242–6247

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Maekawa A, Balestrieri B, Austen KF, Kanaoka Y (2009) GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proc Natl Acad Sci U S A 106:11685–11690

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tohda Y, Nakahara H, Kubo H, Haraguchi R, Fukuoka M, Nakajima S (1999) Effects of ONO-1078 (pranlukast) on cytokine production in peripheral blood mononuclear cells of patients with bronchial asthma. Clin Exp Allergy 29:1532–1536

    CAS  PubMed  Google Scholar 

  69. Gotoh M, Okubo K, Hashiguchi K, Wakabayashi K, Kanzaki S, Tanaka N, Fujioka M, Kawashima K, Suematsu K, Sasaki K, Iwasaki M, Yamamotoya H (2012) Noninvasive biological evaluation of response to pranlukast treatment in pediatric patients with Japanese cedar pollinosis. Allergy Asthma Proc 33:459–466

    CAS  PubMed  Google Scholar 

  70. Stoloff SW (2000) The role of LTRAs in the management of persistent asthma. Postgrad Med 108:22–31

    CAS  PubMed  Google Scholar 

  71. Yokomizo T (2015) Two distinct leukotriene B4 receptors, BLT1 and BLT2. J Biochem 157:65–71

    CAS  PubMed  Google Scholar 

  72. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387:620–624

    CAS  PubMed  Google Scholar 

  73. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tager AM, Luster AD (2003) BLT1 and BLT2: the leukotriene B(4) receptors. Prostaglandins Leukot Essent Fatty Acids 69:123–134

    CAS  PubMed  Google Scholar 

  75. Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M (2007) Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J Immunol 179:5454–5461

    CAS  PubMed  Google Scholar 

  76. Brandt SL, Serezani CH (2017) Too much of a good thing: how modulating LTB. Semin Immunol 33:37–43

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Okamoto F, Saeki K, Sumimoto H, Yamasaki S, Yokomizo T (2010) Leukotriene B4 augments and restores Fc gamma Rs-dependent phagocytosis in macrophages. J Biol Chem 285:41113–41121

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mancuso P, Lewis C, Serezani CH, Goel D, Peters-Golden M (2010) Intrapulmonary administration of leukotriene B4 enhances pulmonary host defense against pneumococcal pneumonia. Infect Immun 78:2264–2271

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Serezani CH, Lewis C, Jancar S, Peters-Golden M (2011) Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest 121:671–682

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Z, Filgueiras LR, Wang S, Serezani AP, Peters-Golden M, Jancar S, Serezani CH (2014) Leukotriene B4 enhances the generation of proinflammatory microRNAs to promote MyD88-dependent macrophage activation. J Immunol 192:2349–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim ND, Chou RC, Seung E, Tager AM, Luster AD (2006) A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J Exp Med 203:829–835

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liao T, Ke Y, Shao W-H, Haribabu B, Kaplan HJ, Sun D, Shao H (2006) Blockade of the interaction of leukotriene b4 with its receptor prevents development of autoimmune uveitis. Invest Ophthalmol Vis Sci 47:1543–1549

    PubMed  Google Scholar 

  83. Heller EA, Liu E, Tager AM, Sinha S, Roberts JD, Koehn SL, Libby P, Aikawa ER, Chen JQ, Huang P, Freeman MW, Moore KJ, Luster AD, Gerszten RE (2005) Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation 112:578–586

    PubMed  Google Scholar 

  84. Gelfand EW (2017) Importance of the leukotriene B4-BLT1 and LTB4-BLT2 pathways in asthma. Semin Immunol 33:44–51

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee AJ, Cho KJ, Kim JH (2015) MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med 47:e156

    CAS  PubMed  Google Scholar 

  86. Zhang Y, Olson RM, Brown CR (2017) Macrophage LTB4 drives efficient phagocytosis of Borrelia burgdorferi via BLT1 or BLT2. J Lipid Res 58:494–503

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsunaga Y, Fukuyama S, Okuno T, Sasaki F, Matsunobu T, Asai Y, Matsumoto K, Saeki K, Oike M, Sadamura Y, Machida K, Nakanishi Y, Kubo M, Yokomizo T, Inoue H (2013) Leukotriene B4 receptor BLT2 negatively regulates allergic airway eosinophilia. FASEB J 27:3306–3314

    CAS  PubMed  Google Scholar 

  88. Iizuka Y, Okuno T, Saeki K, Uozaki H, Okada S, Misaka T, Sato T, Toh H, Fukayama M, Takeda N, Kita Y, Shimizu T, Nakamura M, Yokomizo T (2010) Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory colitis. FASEB J 24:4678–4690

    CAS  PubMed  Google Scholar 

  89. Seo J-M, Cho K-J, Kim E-Y, Choi MH, Chung BC, Kim J-H (2011) Up-regulation of BLT2 is critical for the survival of bladder cancer cells. Exp Mol Med 43:129

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y, Yokoyama C, Nakamizo S, Kabashima K, Narumiya S, Shimizu T, Yokomizo T (2014) 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 211:1063–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim GY, Lee JW, Cho SH, Seo JM, Kim JH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29:915–920

    CAS  PubMed  Google Scholar 

  92. Showell H, Breslow R, Conklyn M, Hingorani G, Koch K (1996) Characterization of the pharmacological profile of the potent LTB4 antagonist CP-105,696 on murine LTB4 receptors in vitro. Br J Pharmacol 117:1127

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Richards IM, Griffin RL, Oostveen JA, Morris J, Wishka DG, Dunn CJ (1989) Effect of the selective leukotriene B4 antagonist U-75302 on antigen-induced bronchopulmonary eosinophilia in sensitized Guinea pigs. Am Rev Respir Dis 140:1712–1716

    CAS  PubMed  Google Scholar 

  94. Lawson C, Wishka D, Morris J, Fitzpatrick F (1989) Receptor antagonism of leukotriene B4 myotropic activity by the 2, 6 disubstituted pyridine analog U-75302: characterization on lung parenchyma strips. J Lipid Mediat 1:3–12

    CAS  PubMed  Google Scholar 

  95. Adrian TE, Hennig R, Friess H, Ding X (2008) The role of PPARgamma receptors and leukotriene B(4) receptors in mediating the effects of LY293111 in pancreatic Cancer. PPAR Res 2008:827096

    PubMed  Google Scholar 

  96. Tong WG, Ding XZ, Hennig R, Witt RC, Standop J, Pour PM, Adrian TE (2002) Leukotriene B4 receptor antagonist LY293111 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Clin Cancer Res 8:3232–3242

    CAS  PubMed  Google Scholar 

  97. Hennig R, Ding XZ, Tong WG, Witt RC, Jovanovic BD, Adrian TE (2004) Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Lett 210:41–46

    CAS  PubMed  Google Scholar 

  98. Zhang W, McQueen T, Schober W, Rassidakis G, Andreeff M, Konopleva M (2005) Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation. Leukemia 19:1977–1984

    CAS  PubMed  Google Scholar 

  99. ClinicalTrials.gov, L. f. Amebulant, and U. S. N. I. o. Health. 2017. https://clinicaltrials.gov/ct2/results?term=amelubant&Search=Search

  100. . Trial Synopsis 543.10: Effect of 14-Day Treatment with BIIL 284 BS on Patients with COPD (Double-Blind, Placebo-Controlled, Randomised, Parallel Group Study).Boehringer Ingelheim. http://www.trials.boehringer-ingelheim.com/public/trial_results_documents/543/543.10_U01–1368.pdf

  101. . Trial Synopsis 543.14: A double-blind, randomized, three parallel group placebocontrolled study to investigate pharmacokinetics, effect on expression of CD11b/CD18 (Mac-1), as well as safety and efficacy of two oral doses of BIIL 284 BS (dosage: 25 mg daily, 150 mg daily) in patients with rheumatoid arthritis over two weeks. Boehringer Ingelheim. http://www.trials.boehringer-ingelheim.com/public/trial_results_documents/543/543.14_U01-1167.pdf.

  102. 543.11, T. S. The effect BIIL 284 BS (14 day treatment) on induced-sputum variables in patients with bronchial asthma (a double-blind. randomized, placebo-controlled parallel study). https://trials.boehringer-ingelheim.com/trial_results/clinical_trials_overview/clinical_trial_result.c=n.i=9.html

  103. . Trial Synopsis 543.37: A randomized, double-blind within dose, placebo-controlled study to investigate the safety, tolerability and pharmacokinetics of repeated oral doses (15-day dosing) of BIIL 284 BS in adult (150 mg) and pediatric (75 mg) cystic fibrosis patients. Boehringer Ingelheim. http://www.trials.boehringer-ingelheim.com/public/trial_results_documents/543/543.37_U03-3277.pdf.

  104. Konstan MW, Döring G, Heltshe SL, Lands LC, Hilliard KA, Koker P, Bhattacharya S, Staab A, Hamilton A, I. a. C. o. B. T. 543.45 (2014) A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J Cyst Fibros 13:148–155

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13:11–22

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bäck M, Sultan A, Ovchinnikova O, Hansson GK (2007) 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. Circ Res 100:946–949

    PubMed  Google Scholar 

  107. Kaaman M, Rydén M, Axelsson T, Nordström E, Sicard A, Bouloumié A, Langin D, Arner P, Dahlman I (2006) ALOX5AP expression, but not gene haplotypes, is associated with obesity and insulin resistance. Int J Obes 30:447–452

    CAS  Google Scholar 

  108. Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A, Jala VR, Haribabu B (2011) Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J Immunol 187:1942–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Giouleka P, Papatheodorou G, Lyberopoulos P, Karakatsani A, Alchanatis M, Roussos C, Papiris S, Loukides S (2011) Body mass index is associated with leukotriene inflammation in asthmatics. Eur J Clin Investig 41:30–38

    CAS  Google Scholar 

  110. Mothe-Satney I, Filloux C, Amghar H, Pons C, Bourlier V, Galitzky J, Grimaldi PA, Féral CC, Bouloumié A, Van Obberghen E, Neels JG (2012) Adipocytes secrete leukotrienes: contribution to obesity-associated inflammation and insulin resistance in mice. Diabetes 61:2311–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A, Chung H, Mayoral R, Maris M, Ofrecio JM, Taguchi S, Lu M, Olefsky JM (2015) LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 21:239–247

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Guimarães FR, Sales-Campos H, Nardini V, da Costa TA, Fonseca MTC, Júnior VR, Sorgi CA, da Silva JS, Chica JEL, Faccioli LH, de Barros Cardoso CR (2018) The inhibition of 5Lipoxygenase (5-LO) products leukotriene B4 (LTB). Clin Immunol 190:74–83

    PubMed  Google Scholar 

  113. Ying W, Wollam J, Ofrecio JM, Bandyopadhyay G, El Ouarrat D, Lee YS, Oh DY, Li P, Osborn O, Olefsky JM (2017) Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest 127:1019–1030

    PubMed  PubMed Central  Google Scholar 

  114. Ramalho T, Ramalingam L, Filgueiras L, Festuccia W, Jancar S, Moustaid-Moussa N (2019) Leukotriene-B4 modulates macrophage metabolism and fat loss in type 1 diabetic mice. J Leukoc Biol 106(3):665–675

    CAS  PubMed  Google Scholar 

  115. Rosenfalck AM, Almdal T, Hilsted J, Madsbad S (2002) Body composition in adults with type 1 diabetes at onset and during the first year of insulin therapy. Diabet Med 19:417–423

    CAS  PubMed  Google Scholar 

  116. Wolf P, Fellinger P, Pfleger L, Smajis S, Beiglböck H, Gajdošík M, Anderwald CH, Trattnig S, Luger A, Winhofer Y, Krššák M, Krebs M (2019) Reduced hepatocellular lipid accumulation and energy metabolism in patients with long standing type 1 diabetes mellitus. Sci Rep 9:2576

    PubMed  PubMed Central  Google Scholar 

  117. Jones Iv AR, Coleman EL, Husni NR, Deeney JT, Raval F, Steenkamp D, Dooms H, Nikolajczyk BS, Corkey BE (2017) Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells. PLoS One 12:e0188474

    PubMed Central  Google Scholar 

  118. Elias I, Ferré T, Vilà L, Muñoz S, Casellas A, Garcia M, Molas M, Agudo J, Roca C, Ruberte J, Bosch F, Franckhauser S (2016) ALOX5AP overexpression in adipose tissue leads to LXA4 production and protection against diet-induced obesity and insulin resistance. Diabetes 65:2139–2150

    CAS  PubMed  Google Scholar 

  119. Tamucci KA, Namwanje M, Fan L, Qiang L (2018) The dark side of browning. Protein Cell 9:152–163

    CAS  PubMed  Google Scholar 

  120. Honold L, Nahrendorf M (2018) Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res 122:113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Filgueiras LR, Brandt SL, Wang S, Wang Z, Morris DL, Evans-Molina C, Mirmira RG, Jancar S, Serezani CH (2015) Leukotriene B4-mediated sterile inflammation promotes susceptibility to sepsis in a mouse model of type 1 diabetes. Sci Signal 8:ra10

    PubMed  PubMed Central  Google Scholar 

  122. Ramalho T, Filgueiras L, Silva-Jr I, Pessoa AFM, Jancar S (2018) Impaired wound healing in type 1 diabetes is dependent on 5-lipoxygenase products. Sci Rep (Nature) 8(1):14164

    Google Scholar 

  123. Zhao L, Moos MP, Gräbner R, Pédrono F, Fan J, Kaiser B, John N, Schmidt S, Spanbroek R, Lötzer K, Huang L, Cui J, Rader DJ, Evans JF, Habenicht AJ, Funk CD (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 10:966–973

    CAS  PubMed  Google Scholar 

  124. Mehrabian M, Allayee H, Wong J, Shi W, Wang XP, Shaposhnik Z, Funk CD, Lusis AJ, Shih W (2002) Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 91:120–126

    CAS  PubMed  Google Scholar 

  125. Hlawaty H, Jacob MP, Louedec L, Letourneur D, Brink C, Michel JB, Feldman L, Bäck M (2009) Leukotriene receptor antagonism and the prevention of extracellular matrix degradation during atherosclerosis and in-stent stenosis. Arterioscler Thromb Vasc Biol 29:518–524

    CAS  PubMed  Google Scholar 

  126. Clarkson S, Newburgh LH (1926) The relation between atherosclerosis and ingested cholesterol in the rabbit. J Exp Med 43:595–612

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bäck M, Hansson GK (2006) Leukotriene receptors in atherosclerosis. Ann Med 38:493–502

    PubMed  Google Scholar 

  128. Ketelhuth DF, Hermansson A, Hlawaty H, Letourneur D, Yan ZQ, Bäck M (2015) The leukotriene B4 receptor (BLT) antagonist BIIL284 decreases atherosclerosis in ApoE−/− mice. Prostaglandins Other Lipid Mediat 121:105–109

    CAS  PubMed  Google Scholar 

  129. de Hoog VC, Bovens SM, de Jager SC, van Middelaar BJ, van Duijvenvoorde A, Doevendans PA, Pasterkamp G, de Kleijn DP, Timmers L (2015) BLT1 antagonist LSN2792613 reduces infarct size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc Res 108:367–376

    PubMed  Google Scholar 

  130. Moos MP, Mewburn JD, Kan FW, Ishii S, Abe M, Sakimura K, Noguchi K, Shimizu T, Funk CD (2008) Cysteinyl leukotriene 2 receptor-mediated vascular permeability via transendothelial vesicle transport. FASEB J 22:4352–4362

    CAS  PubMed  Google Scholar 

  131. Jiang W, Hall SR, Moos MP, Cao RY, Ishii S, Ogunyankin KO, Melo LG, Funk CD (2008) Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am J Pathol 172:592–602

    PubMed  PubMed Central  Google Scholar 

  132. Hui Y, Cheng Y, Smalera I, Jian W, Goldhahn L, Fitzgerald GA, Funk CD (2004) Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation 110:3360–3366

    CAS  PubMed  Google Scholar 

  133. Becher UM, Ghanem A, Tiyerili V, Fürst DO, Nickenig G, Mueller CF (2011) Inhibition of leukotriene C4 action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury. J Mol Cell Cardiol 50:570–577

    CAS  PubMed  Google Scholar 

  134. Nobili E, Salvado MD, Folkersen L, Castiglioni L, Kastrup J, Wetterholm A, Tremoli E, Hansson GK, Sironi L, Haeggström JZ, Gabrielsen A (2012) Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease. PLoS One 7:e41786

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Allayee H, Hartiala J, Lee W, Mehrabian M, Irvin CG, Conti DV, Lima JJ (2007) The effect of montelukast and low-dose theophylline on cardiovascular disease risk factors in asthmatics. Chest 132:868–874

    CAS  PubMed  Google Scholar 

  136. Ingelsson E, Yin L, Bäck M (2012) Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J Allergy Clin Immunol 129:702–707.e702

    CAS  PubMed  Google Scholar 

  137. Hoxha M, Rovati GE, Cavanillas AB (2017) The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol 73:799–809

    CAS  PubMed  Google Scholar 

  138. Emala C, Black C, Curry C, Levine MA, Hirshman CA (1993) Impaired beta-adrenergic receptor activation of adenylyl cyclase in airway smooth muscle in the basenji-greyhound dog model of airway hyperresponsiveness. Am J Respir Cell Mol Biol 8:668–675

    CAS  PubMed  Google Scholar 

  139. Amrani Y, Bradding P (2017) β2-Adrenoceptor function in asthma. Adv Immunol 136:1–28

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henrique Serezani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramalho, T., Pereira, N., Brandt, S.L., Serezani, C.H. (2020). Targeting Leukotrienes as a Therapeutic Strategy to Prevent Comorbidities Associated with Metabolic Stress. In: Kihara, Y. (eds) Druggable Lipid Signaling Pathways. Advances in Experimental Medicine and Biology, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-50621-6_4

Download citation

Publish with us

Policies and ethics