Skip to main content

Hydrodynamics of Two-Phase Upflow in a Pneumatic Classifier with the Variable Cross-Section

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing III (DSMIE 2020)

Abstract

This paper is aimed at the investigation of the two-phase upflow hydrodynamics in prismatic-shape apparatuses with the variable cross-section. To reach this aim, the mathematical model of the gas flow was developed based on the averaged in time and space velocities of the turbulent flow. This model is supplemented by the research of the solid particle movement in this flow. The research novelty of the proposed research is in the obtained dependencies for determining the velocity field of solid particles in a pneumatic classifier, as well as for estimating the friction coefficient. Additionally, equations for determining the velocity field of a gas phase were developed by velocity components of the two-dimensional gas flow. As a result, related graphical characteristics of the gas flow in the pneumatic classifier were built, and trajectories of solid particles were defined with respect to the apparatus width and height. The approach for evaluating empirical parameters was proposed based on the quasi-linear regression analysis. Moreover, the conducted regression analysis allows identifying the parameters of the mathematical model by the results of numerical simulations. The proposed approach will allow optimizing the technological and operating parameters of the pneumatic classification process and design of the related separation equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yukhymenko, M., Ostroha, R., Litvinenko, A., Bocko, J.: Estimation of gas flow dustiness in the main pipelines of booster compressor stations. In: IOP Conference Series: Materials Science and Engineering, vol. 233, p. 012026 (2017). https://doi.org/10.1088/1757-899x/233/1/012026

  2. Ostroha, R., Yukhymenko, M., Lytvynenko, A., Bocko, J., Pavlenko, I.: Granulation process of the organic suspension: fluidized bed temperature influence on the kinetics of the granule formation. In: International Conference on Design, Simulation, Manufacturing: The Innovation Exchange. DSMIE-2018. Lecture Notes in Mechanical Engineering, F2, pp. 463–471 (2019). https://doi.org/10.1007/978-3-319-93587-4_48

  3. Ostroha, R., Yukhymenko, M., Yakushko, S., Artyukhov, A.: Investigation of the kinetic laws affecting the organic suspension granulation in the fluidized bed. East.-Eur. J. Enterp. Technol. 1(88), 4–10 (2017). https://doi.org/10.15587/1729-4061.2017.107169

    Article  Google Scholar 

  4. Li, Z., Kind, M., Gruenewald, G.: Modeling fluid dynamics and growth kinetics in fluidized bed spray granulation. J. Comput. Multiph. Flows 2(4), 235–248 (2010). https://doi.org/10.1260/1757-482X.2.4.235

    Article  Google Scholar 

  5. Shvab, A.V., Evseev, N.S.: Modeling the process of particle fractionation in a pneumatic centrifugal apparatus. J. Eng. Phys. Thermophys. 89(4), 829–839 (2016). https://doi.org/10.1007/s10891-016-1443-3

    Article  Google Scholar 

  6. Shademan, M., Nouri, M.: A Lagrangian-Lagrangian model for two-phase bubbly flow around circular cylinder. J. Comput. Multiph. Flows 6(2), 151–167 (2014). https://doi.org/10.1260/1757-482X.6.2.151

    Article  MathSciNet  Google Scholar 

  7. Shvab, A.V., Zatikov, P.N., Sadretdinov, S.R., Chepel, A.G.: Simulation of the fractional separation of particles in an air centrifugal classifier. Theor. Found. Chem. Eng. 44(6), 859–868 (2010). https://doi.org/10.1134/S0040579510060059

    Article  Google Scholar 

  8. Pavlenko, I.V., Simonovskiy, V.I., Demianenko, M.M.: Dynamic analysis of centrifugal machine rotors supported on ball bearings by combined using 3D and beam finite element models. In: IOP Conference Series: Materials Science and Engineering, vol. 233, p. 012053 (2017). https://doi.org/10.1088/1757-899x/233/1/012053

  9. Shishkin, S.F., Dzyuzer, V.Ya., Shishkin, A.S.: Pneumatic classification of sands for glass industry. Steklo i Keramika 11, 5–8 (2001)

    Google Scholar 

  10. Ochowiak, M., Wlodarczak, S., Pavlenko, I., Janecki, D., Krupinska, A., Markowska, M.: Study on interfacial surface in modified spray tower. Processes 7(8), 532 (2019). https://doi.org/10.3390/pr7080532

    Article  Google Scholar 

  11. Kirsanov, V.A., Kirsanov, M.V.: Hydrodynamic characteristics of classification process in pneumatic classifier with continuous shelves. Chem. Pet. Eng. 54(1–2), 71–74 (2018). https://doi.org/10.1007/s10556-018-0441-z

    Article  Google Scholar 

  12. Liaposhchenko, O.O., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., Demianenko, M.M.: Appliance of inertial gas-dynamic separation of gas dispersion flaws in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. In: IOP Conference Series: Materials Science and Engineering, vol. 233, p. 012025 (2017). https://doi.org/10.1088/1757-899x/233/1/012025

  13. Sklabinskyi, V., Liaposhchenko, O., Pavlenko, I., Lytvynenko, O., Demianenko, M.: Modelling of liquid’s distribution and migration in the fibrous filter layer in the process of inertial-filtering separation. In: International Conference on Design, Simulation, Manufacturing: The Innovation Exchange. DSMIE-2018. Lecture Notes in Mechanical Engineering, F2, pp. 489–497 (2019). https://doi.org/10.1007/978-3-319-93587-4_51

  14. Phenow, E.A., Mezenov, A.A., Gigoolo, Y.Y.: Experimental study of parameters of grain milling product separation in pneumatic screw classifier. Biosci., Biotechnol. Res. Asia 13(2), 669–680 (2016). https://doi.org/10.13005/bbra/2083

    Article  Google Scholar 

  15. Kshetri, S., Steward, B.L., Birrell, S.J.: Dielectric spectroscopic sensing of fine liquid droplets in an airstream. Int. J. Fluid Power 19(1), 42–48 (2018)

    Article  Google Scholar 

  16. Wang, J., Dong, L., Jing, S., Jin, Y.: Development of a new centrifugal pneumatic classifier for powder materials. Chem. Eng. 29(2), 43–45 (2001)

    Google Scholar 

  17. Povstyanoy, O., Zabolotnyi, O., Rud, V., Kuzmov, A., Herasymchuk, H.: Modeling of processes for creation new porous permeable materials with adjustable properties. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 456–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_46

  18. Hoseinzadeh, S., Moafi, A., Shirkhani, A., Chamkha, A.J.: Numerical validation heat transfer of rectangular cross-section porous fins. J. Thermophys. Heat Transf. 33(3), 698–704 (2019). https://doi.org/10.2514/1.T5583

    Article  Google Scholar 

  19. Povstyanoi, O.Y., Rud’, V.D., Samchuk, L.M., Zubovets’ka, N.T.: Production of porous materials with the use of energy-saving technologies. Mater. Sci. 51(6), 847–853 (2016). https://doi.org/10.1007/s11003-016-9912-6

  20. Morimoto, H., Shakouchi, T.: Classification of ultra fine powder by a new pneumatic type classifier. Powder Technol. 131(1), 71–79 (2003)

    Article  Google Scholar 

  21. Shvab, A.V., Evseev, N.S.: Studying the separation of particles in a turbulent vortex flow. Theor. Found. Chem. Eng. 49(2), 191–199 (2015). https://doi.org/10.1134/S0040579515020128

    Article  Google Scholar 

  22. Ma, R., Chang, J., Shi, C., Zhang, X.: Theoretical and experimental study on pneumatic classification of fine-metal-powder. Adv. Mater. Res. 554–556, 546–550 (2012). https://doi.org/10.4028/www.scientific.net/AMR.554-556.546

    Article  Google Scholar 

  23. Sokolov, V., Krol, O.: Determination of transfer functions for electrohydraulic servo drive of technological equipment. In.: Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 364–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_38

  24. Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Period. Polytech. Mech. Eng. 63(1), 67–73 (2019). https://doi.org/10.3311/PPme.13198

    Article  Google Scholar 

  25. Dynnyk, O., Denysenko, Y., Zaloga, V., Ivchenko, O., Yashyna, T.: Information support for the quality management system assessment of engineering enterprises. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 65–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_7

  26. Tarelnik, V., Belous, A., Antoszewski, B., Zukov, A.: Problems and criteria of quality improvement in end face mechanical seal rings through technological methods. In: IOP Conference Series: Materials Science and Engineering, vol. 233, p. 012037 (2017). https://doi.org/10.1088/1757-899x/233/1/012037

  27. Saniuk, S., Saniuk, A., Caganova, D.: Cyber industry networks as an environment of the industry 4.0 implementation. Wirel. Netw. 1–7 (2019). https://doi.org/10.1007/s11276-019-02079-3

  28. Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibr. Phys. Syst. 29, 2018026 (2018)

    Google Scholar 

  29. Ebrahimi, M., Crapper, M., Ooi, J.Y.: Numerical and experimental study of horizontal pneumatic transportation of spherical and low-aspect-ratio cylindrical particles. Powder Technol. 293, 48–59 (2015). https://doi.org/10.1016/j.powtec.2015.12.019

    Article  Google Scholar 

  30. Wu, S., Liu, J., Yu, Y.: Prediction of cut size for pneumatic classification based on a back propagation (BP) neural network. ZKG Int. 6(11), 64–71 (2016)

    Google Scholar 

  31. Kirsanov, V.A., Kirsanov, P.V.: Effect of structural parameters of cascade elements on effectiveness of pneumatic classification. Chem. Pet. Eng. 49(11–12), 707–711 (2014). https://doi.org/10.1007/s10556-014-9823-z

    Article  Google Scholar 

  32. Kretschmar, G., Mutze, T., van der Meer, F.: Influence of feed moisture on the efficiency of dynamic air classifiers. In: 28th International Mineral Processing Congress (IMPC 2016), p. 135047 (2016)

    Google Scholar 

  33. Zyatikov, P., Roslyak, A.: Peculiarities of solid particles separation in an unsteady turbulent flow of a pneumatic centrifugal classifier. In: EPJ Web of Conferences, vol. 76, p. 01013 (2014). https://doi.org/10.1051/epjconf/20147601013

  34. Panchenko, A., Voloshina, A., Kiurchev, S., Titova, O., Onopreychuk, D., Stefanov, V., Safoniuk, I., Pashchenko, V., Radionov, H., Golubok, M.: Development of the universal model of mechatronic system with a hydraulic drive. East.-Eur. J. Enterp. Technol. 4(7(94)), 51–60 (2018). https://doi.org/10.15587/1729-4061.2018.139577

    Article  Google Scholar 

  35. Altaf, S., Mehmood, M.S., Imran, M.: Implementation of efficient artificial neural network data fusion classification technique for induction motor fault detection. J. Eng. Sci. 5(2), E16–E21 (2018). https://doi.org/10.21272/jes.2018.5(2).e4

    Article  Google Scholar 

  36. Bilous, O.A., Hovorun, T.P., Berladir, K.V., Vorobiov, S.I., Simkulet, V.V.: Mathematical modeling of the mechanical characteristic of the activated PTFE-matrix using the method of planning the experiment. J. Eng. Sci. 5(1), C1–C5 (2018). https://doi.org/10.21272/jes.2018.5(1).c1

    Article  Google Scholar 

  37. Pylypaka, S., Nesvidomin, V., Zaharova, T., Pavlenko, O., Klendiy, M.: The investigation of particle movement on a helical surface. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 671–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_67

  38. Pylypaka, S., Klendiy, M., Zaharova, T.: Movement of the particle on the external surface of the cylinder, which makes the translational oscillations in horizontal planes. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 336–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_35

  39. Voloshina, A., Panchenko, A., Boltyansky, O., Panchenko, I., Titova, O.: Justification of the kinematic diagrams for the distribution system of a planetary hydraulic motor. Int. J. Eng. Technol. 7(4.3), 6–11 (2018). https://doi.org/10.14419/ijet.v7i4.3.19544

    Article  Google Scholar 

  40. Kuric, I.: New methods and trends in product development and process planning. Acad. J. Manuf. Eng. 9(1), 83–88 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0602.

The theoretical part of the research was realized within the project “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” (State reg. No. 0117U003931) ordered by the Ministry of Education and Science of Ukraine.

The numerical simulations were realized at the Faculty of Manufacturing Technologies with a seat in Presov of Technical University of Kosice (Presov, Slovak Republic) within the research project “Identification of Parameters for Technological Equipment using Artificial Neural Networks” funded by the National Scholarship Programme of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pavlenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytvynenko, A., Pavlenko, I., Yukhymenko, M., Ostroha, R., Pitel, J. (2020). Hydrodynamics of Two-Phase Upflow in a Pneumatic Classifier with the Variable Cross-Section. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics