Skip to main content

The Rhizosphere Microbiome: Microbial Communities and Plant Health

  • Chapter
  • First Online:
Plant Microbiome Paradigm

Abstract

Exploration of rhizosphere and rhizosphere microbiome has been the research focus for last many decades. The rhizosphere is a junction for intercommunication among plants, insects, and microorganisms. It serves as diverse habitat with a nutrient-rich niche by providing a platform interaction among plants-soil-microorganism trio along with energy and matter trade-off. The rhizosphere microbiome also influences plant vigour, health, and defence against stresses by interfering with nutrient uptake, chemical signalling, and enzyme activity. Interaction among the microbiome, the environment, and the genetic makeup of host is well-known to contribute towards host health. The present chapter summarises the major effects of microbial communities present in rhizosphere on plant health and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of rhizobium and pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awad E, Romheld V, Marschner (1994) Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant Soil 165:213–218

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243. https://doi.org/10.1094/PHYTO-97-2-0239

    Article  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    CAS  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, Manero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 1–17

    Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid Khaled AS (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 1:53–57. https://doi.org/10.1016/j.cub.2012.11.022

    Article  CAS  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324(5928):746–748. https://doi.org/10.1126/science.1171661

    Article  CAS  PubMed  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452. https://doi.org/10.1016/j.tree.2016.02.016

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    CAS  PubMed  Google Scholar 

  • Berg RH, Tyler ME, Novick NJ (1980) Biology of azospirillum-sugarcane association: enhancement of nitrogenase activity. Appl Environ Microbiol 39:642–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7(11):1673–1685. https://doi.org/10.1111/j.1462-2920.2005.00891.x

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. Wood J Microb Biotechnol 28:1327–1350

    CAS  Google Scholar 

  • Bilgrami AL (1997) Nematode biopesticides. Aligarh Muslim University, Aligarh, 262 pp

    Google Scholar 

  • Bird AF (1959) The attractiveness of roots to the plant-parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica 4:322–335. https://doi.org/10.1163/187529259X00534

    Article  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233

    CAS  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1

    Article  CAS  PubMed  Google Scholar 

  • Bruehl GW (1987) Soilborne plant pathogens. Macmillan, New York

    Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    CAS  PubMed  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root diseases. Proc Natl Acad Sci USA 4197

    Google Scholar 

  • Coyne BMS, Mikkelson R (2015) Soil microorganisms contribute to plant nutrition and root health. Better Crops 99(1):18–20

    Google Scholar 

  • Curtis RHC, Forest R, Perry R (2009) Hatch and host location. In: Perry R, Moens M, Starr J (eds) Root-knot nematodes. CABI, Wallingford, pp 139–162

    Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulation. In: Microbial siderophores, vol 12. Springer, Berlin, pp 1–42

    Google Scholar 

  • De Felipe, Fijación MR (2006) Biológica de dinitrógeno atmosférico en vida libre. In: Bedmar E, Gonzálo J, Lluch C (eds) Fijación de Nitrógeno: Fundamentos y Aplicaciones. Granada: Sociedad Española de Microbiología. Sociedad Española de Fijación de Nitrógeno, Granada, pp 9–16

    Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439. https://doi.org/10.1016/j.tplants.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizo deposits in structuring rhizosphere bacterial communities? Microbiol Ecol 72(3):313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.x

    Article  CAS  Google Scholar 

  • Deshmukh P, Shinde S (2016) Beneficial role of rhizosphere mycoflora in the field of agriculture: an overview. Int J Sci Res 5(8):529–533

    Google Scholar 

  • Dobbs CG, Hinson WH (1953) A widespread fungistatis in soils. Nature 172:197–199

    CAS  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. https://doi.org/10.1111/j.1744-7348.2010.00439.x

    Article  CAS  Google Scholar 

  • Drogue B, Combes-Meynet E, Moënne-Loccoz Y, Wisniewski-Dyé F, Prigent-Combaret C (2013) Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1 and 2. Wiley, Hoboken, pp 281–294. https://doi.org/10.1002/9781118297674.ch27

    Chapter  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Fankem HD, Nwaga AD, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotech 5:2450–2460

    CAS  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Google Scholar 

  • Franco J, Main G, Oros R (1999) Trap crops as a component for the integrated management of Globodera spp. (potato cyst nematodes) in Bolivia. Nematropica 29:51–60

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10(8):3400–3419. https://doi.org/10.3390/ijms10083400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9(1):566–576. https://doi.org/10.1080/17429145.2013.871650

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana GP, Podle S, Collins MD, Hutson RA, Naresh KG (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312(1):7–14. https://doi.org/10.1007/s11104-007-9514-z

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist 168(2):293–303. https://doi.org/10.1111/j.1469-8137.2005.01512.x

    Article  CAS  PubMed  Google Scholar 

  • Hol WHG, Veen JA (2002) Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. J Chem Ecol 28:1763–1772. https://doi.org/10.1023/A:1020557000707

    Article  CAS  PubMed  Google Scholar 

  • Hol WHG, de Boer W, de Hollander M, Kuramae EE, Meisner A, van der Putten WH (2010) Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Front Plant Sci 6:485. https://doi.org/10.3389/fpls.2015.00485

    Article  Google Scholar 

  • Hooper DU, Hapin FS, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge M, Loreau M, Aeem S, Schmid B, Setala H, Symstad AJ, Andermeer JV, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Google Scholar 

  • Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC, Boca Raton, pp 159–181

    Google Scholar 

  • Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO (2012) Identification of proteins likely to be involved in morphogenesis, cell division and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194(23):6419–6430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Kim JT (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Joosten L, Mulder PPJ, Klinkhamer PGL, Veen JA (2009) Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris. Plant Soil 325:133–143. https://doi.org/10.1007/s11104-009-9963-7

    Article  CAS  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034. https://doi.org/10.1007/s00374-008-0288-0

    Article  CAS  Google Scholar 

  • Kaymak DC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fert Soils 24:347–352

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Ko WH, Lockwood JL (1967) Soil fungistasis: relation to fungal spore nutrition. Phytopathology 57:894–901

    Google Scholar 

  • Kogel KH, Franken P, Heuckelhoven R (2006) Endophyte or parasite-what decides? Curr Opin Plant Biol 9:358–363. https://doi.org/10.1016/j.pbi.2006.05.001

    Article  PubMed  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Kumar M, Kumar V, Prasad R (2020) Phyto-microbiome in stress regulation. Springer, Singapore. ISBN 978-981-15-2576-6. https://www.springer.com/gp/book/9789811525759

  • Lau JA, Lennon JT (2011) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109(35):14058–14062. https://doi.org/10.1073/pnas.1202319109

    Article  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase containing Azospirillum brasilense Cdl843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    CAS  PubMed  Google Scholar 

  • Liebman JA, Epstein L (1992) Activity of fungistatic compounds from soil. Phytopathology 82:147–153

    Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016. https://doi.org/10.1128/MMBR.00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockwood JL (1977) Fungistatis in soils. Biol Rev 2(1):1–43. https://doi.org/10.1111/j.1469-185X.1977.tb01344.x

    Article  Google Scholar 

  • Lu T, Ke MJ, Peijnenburg WJGM, Zhu YC, Zhang M, Sun LW (2018) Investigation of rhizospheric microbial communities in wheat, barley, and two rice varieties at the seedling stage. J Agric Food Chem 66:2645–2653

    CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129(1):1–10

    CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286. https://doi.org/10.1016/0016-7061(81)90024-0

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 52:119–129

    CAS  Google Scholar 

  • Nath M, Bhatt D, Bhatt MD, Prasad R, Tuteja N (2018) Microbe-mediated enhancement of nitrogen and phosphorus content for crop improvement. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 291–301

    Google Scholar 

  • Osbourn A, Goss RJ, Field RA (2011) The saponins: polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268. https://doi.org/10.1039/c1np00015b

    Article  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150. https://doi.org/10.1007/s00253-007-0909-9

    Article  CAS  PubMed  Google Scholar 

  • Perry RN (2005) An evaluation of types of attractants enabling plant-parasitic nematodes to locate plant roots. Russ J Nematol 13:83–88

    Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894. https://doi.org/10.1104/pp.104.044222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, Léon-Kloosterziel KM, Keurentjes JJB, Verhagen BWM, Knoester M, Van der Sluis I, Bakker PAHM (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107:51–61

    Google Scholar 

  • Prasad R (2008) Studies on interaction between a symbiotic fungus (Piriformospora indica), rhizobacteria and selected plants. Ph. D. thesis. CCS University, Meerut

    Google Scholar 

  • Prasad R, Garg AP, Varma A (2005) Interaction of medicinal plants with plant growth promoting rhizobacteria and symbiotic fungi. In: Podila GK, Varma A (eds) Basic research and applications of Mycorrhizae, vol 1. IK International, Delhi, pp 363–407

    Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International, Cham, pp 247–260

    Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International, Cham, pp 1–7

    Google Scholar 

  • Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N (2020) The microbial symbionts: potential for the crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, Netherlands, pp 233–240

    Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2013) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63. https://doi.org/10.1007/s11157-013-9317-z

    Article  CAS  Google Scholar 

  • Qiang X, Weiss M, Kogel KH, Schafer P (2012) Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 113:508–518

    Google Scholar 

  • Rasmann S, Ali JG, Helder J, van der Putten WH (2012) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol 38:615–628

    CAS  PubMed  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao IM (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161. https://doi.org/10.1007/s11104-007-9462-7

    Article  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development and cytokinin metabolism. Plant Cell 18:40–54. https://doi.org/10.1105/tpc.105.037796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabry SRS, Saleh SA, Batchelor CA (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc Biol Sci 264:341–346

    PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. https://doi.org/10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRis LJ, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:305

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin, pp 3–22

    Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene. https://doi.org/10.1016/j.plgene.2019.100177

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  • Subbarao NS (1988) Phosphate solubilizing micro-organism. In: Biofertilizer in agriculture and forestry. Regional Biofert. Dev. Centre, Hisar, pp 133–142

    Google Scholar 

  • Tejera N, Lluch C, Martínez-Toledo MV (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos J, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69. https://doi.org/10.1038/23932

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Gow NAR (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant-Microbe Interact 15(8):790–798. https://doi.org/10.1094/MPMI.2002.15.8.790

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Schmid B, Van der Hinjen MGA (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14(10):1001–1009. https://doi.org/10.1111/j.1461-0248.2011.01666.x

    Article  PubMed  Google Scholar 

  • Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506. https://doi.org/10.1111/j.1469-8137.2010.03484.x

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454. https://doi.org/10.1093/jxb/ers054

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Wu Y, Fang W, Zhu S, Jin K, Ji D (2008) The effects of cotton root exudates on the growth and development of Verticillium dahliae. Front Agric China 2(4):435–440

    Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633. https://doi.org/10.1104/pp.125.2.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young IM, Griffiths BS, Robertson WM (1996) Continuous foraging by bacterial-feeding nematodes. Nematologica 42:378382. https://doi.org/10.1163/004425996X00100

    Article  Google Scholar 

  • Zakharova EA, Iosipenko AD, Ignatov VV (2000) Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol Res 155:209–214. https://doi.org/10.1016/S0944-5013(00)80034-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. https://doi.org/10.1007/s00425-007-0530-2

    Article  CAS  PubMed  Google Scholar 

  • Zhou CX, Liu JY, Ye WC, Liu CH, Tan RX (2003) Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense. Tetrahedron 59:5743–5747

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, S., Jain, J., Singh, J. (2020). The Rhizosphere Microbiome: Microbial Communities and Plant Health. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbiome Paradigm. Springer, Cham. https://doi.org/10.1007/978-3-030-50395-6_10

Download citation

Publish with us

Policies and ethics