Skip to main content

Combination of Chemotherapy and Cytokine Therapy in Treatment of Cancers

  • Chapter
  • First Online:
Cancer Immunology

Abstract

The presence of immune cells as part of tumor microenvironment may result in tumor growth inhibition. A number of strategies destined to induce an effective immune response against cancer cells and to revert the immunosuppressive microenvironment are currently being carried out. Cytokines such as interleukin (IL)-2, IL-7, IL-12, IL-15, IL-18, granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), tumor necrosis factor (TNF)-α, macrophage colony-stimulating factor (M-CSF or CSF-1), and interferon (IFN)-γ) secreted by immune cells demonstrated their ability to induce immunity against cancer. Nevertheless, systemic administration of recombinant cytokines may induce toxicity; in addition, the immunosuppressive microenvironment could limit its potential efficacy. In this context, strategies that combine chemotherapy and immunotherapy with cytokines have demonstrated potential for therapeutic synergy. For example, it is possible to potentiate the development of specific immune response by reducing the dose of conventional chemotherapy (e.g., cyclophosphamide, gemcitabine, paclitaxel, and doxorubicin). This chapter provides currently evidence that supports the rationale for the use of combined therapy as a strategy to achieve antitumor immunity in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  2. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137(4):1270–9. https://doi.org/10.1053/j.gastro.2009.06.053.

    Article  CAS  PubMed  Google Scholar 

  3. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586–93. https://doi.org/10.1200/JCO.2006.09.4565.

    Article  PubMed  Google Scholar 

  4. Hohenberger P, Gretschel S. Gastric cancer. Lancet. 2003;362(9380):305–15.

    PubMed  Google Scholar 

  5. Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, et al. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012;72(19):5091–100. https://doi.org/10.1158/0008-5472.CAN-12-1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000;192(2):150–8. https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  7. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8. https://doi.org/10.1038/nrc1256.

    Article  CAS  PubMed  Google Scholar 

  9. Heuff G, Oldenburg HS, Boutkan H, Visser JJ, Beelen RH, Van Rooijen N, et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother. 1993;37(2):125–30.

    CAS  PubMed  Google Scholar 

  10. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63(7):1555–9.

    CAS  PubMed  Google Scholar 

  12. Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–10. https://doi.org/10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13. https://doi.org/10.1056/NEJMoa020177.

    Article  CAS  PubMed  Google Scholar 

  14. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.

    CAS  PubMed  Google Scholar 

  15. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  16. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  17. Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, et al. Regulatory myeloid suppressor cells in health and disease. Cancer Res. 2009;69(19):7503–6. https://doi.org/10.1158/0008-5472.CAN-09-2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62. https://doi.org/10.1146/annurev.immunol.21.120601.141122.

    Article  CAS  PubMed  Google Scholar 

  19. Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol. 2004;4(4):408–14. https://doi.org/10.1016/j.coph.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  20. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307. https://doi.org/10.1038/nri1806.

    Article  CAS  PubMed  Google Scholar 

  21. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. https://doi.org/10.1038/nm1093.

    Article  CAS  PubMed  Google Scholar 

  22. Lo B, Abdel-Motal UM. Lessons from CTLA-4 deficiency and checkpoint inhibition. Curr Opin Immunol. 2017;49:14–9. https://doi.org/10.1016/j.coi.2017.07.014.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–18. https://doi.org/10.1038/cr.2016.151.

    Article  CAS  PubMed  Google Scholar 

  24. Rabinovich GA, Rubinstein N, Matar P, Rozados V, Gervasoni S, Scharovsky GO. The antimetastatic effect of a single low dose of cyclophosphamide involves modulation of galectin-1 and Bcl-2 expression. Cancer Immunol Immunother. 2002;50(11):597–603. https://doi.org/10.1007/s00262-001-0238-2.

    Article  CAS  PubMed  Google Scholar 

  25. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641–8. https://doi.org/10.1007/s00262-006-0225-8.

    Article  CAS  PubMed  Google Scholar 

  26. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, et al. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest. 1998;101(2):429–41. https://doi.org/10.1172/JCI1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, et al. Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal Cancer. Clin Cancer Res. 2017;23(22):6771–80. https://doi.org/10.1158/1078-0432.CCR-17-0895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. https://doi.org/10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J. 2010;16(4):348–53. https://doi.org/10.1097/PPO.0b013e3181eb3358.

    Article  CAS  PubMed  Google Scholar 

  30. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90. https://doi.org/10.1084/jem.20131916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79. https://doi.org/10.1111/j.1600-065X.2008.00602.x.

    Article  CAS  PubMed  Google Scholar 

  32. Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36(5):639–51. https://doi.org/10.1038/onc.2016.229.

    Article  CAS  PubMed  Google Scholar 

  33. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, et al. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol. 2012;42(8):2060–72. https://doi.org/10.1002/eji.201142335.

    Article  CAS  PubMed  Google Scholar 

  34. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 2010;16(6):1812–23. https://doi.org/10.1158/1078-0432.CCR-09-3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70(8):3052–61. https://doi.org/10.1158/0008-5472.CAN-09-3690.

    Article  CAS  PubMed  Google Scholar 

  36. Blidner AG, Salatino M, Mascanfroni ID, Diament MJ, Bal de Kier Joffe E, Jasnis MA, et al. Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments. J Immunol. 2015;194(7):3452–62. https://doi.org/10.4049/jimmunol.1401144.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15. https://doi.org/10.1038/nm1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol. 2014;27:89–97. https://doi.org/10.1016/j.coi.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  39. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005–10. https://doi.org/10.1073/pnas.0712237105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.

    PubMed  PubMed Central  Google Scholar 

  42. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, et al. Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol. 2009;9(4):470–81. https://doi.org/10.1016/j.coph.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  43. Kaneno R, Shurin GV, Kaneno FM, Naiditch H, Luo J, Shurin MR. Chemotherapeutic agents in low noncytotoxic concentrations increase immunogenicity of human colon cancer cells. Cell Oncol (Dordr). 2011;34(2):97–106. https://doi.org/10.1007/s13402-010-0005-5.

    Article  CAS  Google Scholar 

  44. Decatris M, Santhanam S, O'Byrne K. Potential of interferon-alpha in solid tumours: part 1. BioDrugs. 2002;16(4):261–81.

    CAS  PubMed  Google Scholar 

  45. Santhanam S, Decatris M, O'Byrne K. Potential of interferon-alpha in solid tumours: part 2. BioDrugs. 2002;16(5):349–72.

    CAS  PubMed  Google Scholar 

  46. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79. https://doi.org/10.1146/annurev.immunol.26.021607.090357.

    Article  CAS  PubMed  Google Scholar 

  47. Jilaveanu LB, Aziz SA, Kluger HM. Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol. 2009;27(6):614–25. https://doi.org/10.1016/j.clindermatol.2008.09.020.

    Article  PubMed  Google Scholar 

  48. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993;178(4):1223–30.

    CAS  PubMed  Google Scholar 

  49. Berraondo P, Etxeberria I, Ponz-Sarvise M, Melero I. Revisiting Interleukin-12 as a Cancer immunotherapy agent. Clin Cancer Res. 2018;24(12):2716–8. https://doi.org/10.1158/1078-0432.CCR-18-0381.

    Article  CAS  PubMed  Google Scholar 

  50. Cohen J. IL-12 deaths: explanat ion and a puzzle. Science. 1995;270:908.

    CAS  PubMed  Google Scholar 

  51. Mazzolini G, Narvaiza I, Perez-Diez A, Rodriguez-Calvillo M, Qian C, Sangro B, et al. Genetic heterogeneity in the toxicity to systemic adenoviral gene transfer of interleukin-12. Gene Ther. 2001;8(4):259–67. https://doi.org/10.1038/sj.gt.3301387.

    Article  CAS  PubMed  Google Scholar 

  52. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90(8):3539–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80.

    CAS  PubMed  Google Scholar 

  54. Forni G, Fujiwara H, Martino F, Hamaoka T, Jemma C, Caretto P, et al. Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metast Rev. 1988;7(4):289–309. https://doi.org/10.1007/bf00051371.

    Article  CAS  Google Scholar 

  55. Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol. 2004;22(8):1389–97. https://doi.org/10.1200/JCO.2004.04.059.

    Article  CAS  PubMed  Google Scholar 

  56. Sipuleucel-T: APC 8015, APC-8015, Prostate Cancer Vaccine – Dendreon. Drugs in R&D. 2006;7(3):197.

    Google Scholar 

  57. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. https://doi.org/10.3322/caac.21166.

    Article  PubMed  Google Scholar 

  58. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest. 2010;120(4):1111–24. https://doi.org/10.1172/JCI40269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lake RA, Robinson BW. Immunotherapy and chemotherapy--a practical partnership. Nat Rev Cancer. 2005;5(5):397–405. https://doi.org/10.1038/nrc1613.

    Article  CAS  PubMed  Google Scholar 

  60. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Binotto G, Trentin L, Semenzato G. Ifosfamide and cyclophosphamide: effects on immunosurveillance. Oncology. 2003;65(Suppl 2):17–20.

    CAS  PubMed  Google Scholar 

  62. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202(12):1691–701. https://doi.org/10.1084/jem.20050915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol. 2003;170(10):4905–13.

    CAS  PubMed  Google Scholar 

  64. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, et al. Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol. 2013;190(5):2464–71. https://doi.org/10.4049/jimmunol.1202781.

    Article  CAS  PubMed  Google Scholar 

  65. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res. 2007;13(2 Pt 1):644–53. https://doi.org/10.1158/1078-0432.CCR-06-1209.

    Article  CAS  PubMed  Google Scholar 

  66. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO. Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother. 2002;50(11):588–96. https://doi.org/10.1007/s00262-001-0237-3.

    Article  CAS  PubMed  Google Scholar 

  67. Malvicini M, Rizzo M, Alaniz L, Pinero F, Garcia M, Atorrasagasti C, et al. A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal carcinoma in mice. Clin Cancer Res. 2009;15(23):7256–65. https://doi.org/10.1158/1078-0432.CCR-09-1861.

    Article  CAS  PubMed  Google Scholar 

  68. Sone S, Ogura T. Local interleukin-2 therapy for cancer, and its effector induction mechanisms. Oncology. 1994;51(2):170–6.

    CAS  PubMed  Google Scholar 

  69. Ehrke MJ, Verstovsek S, Zaleskis G, Ho RL, Ujhazy P, Maccubbin DL, et al. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2. Cancer Immunol Immunother. 1996;42(4):221–30.

    CAS  PubMed  Google Scholar 

  70. Ewens A, Luo L, Berleth E, Alderfer J, Wollman R, Hafeez BB, et al. Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res. 2006;66(10):5419–26. https://doi.org/10.1158/0008-5472.CAN-05-3963.

    Article  CAS  PubMed  Google Scholar 

  71. Ehrke MJ, Verstovsek S, Maccubbin DL, Ujhazy P, Zaleskis G, Berleth E, et al. Protective specific immunity induced by doxorubicin plus TNF-alpha combination treatment of EL4 lymphoma-bearing C57BL/6 mice. Int J Cancer. 2000;87(1):101–9. https://doi.org/10.1002/1097-0215(20000701)87:1<101::AID-IJC15>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  72. Mihich E, Ehrke MJ. Anticancer drugs plus cytokines: immunodulation based therapies of mouse tumors. Int J Immunopharmacol. 2000;22(12):1077–81.

    CAS  PubMed  Google Scholar 

  73. Regenass U, Muller M, Curschellas E, Matter A. Anti-tumor effects of tumor necrosis factor in combination with chemotherapeutic agents. Int J Cancer. 1987;39(2):266–73.

    CAS  PubMed  Google Scholar 

  74. Jinushi M, Hodi FS, Dranoff G. Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev. 2008;222:287–98. https://doi.org/10.1111/j.1600-065X.2008.00618.x.

    Article  CAS  PubMed  Google Scholar 

  75. He Q, Li J, Yin W, Song Z, Zhang Z, Yi T, et al. Low-dose paclitaxel enhances the anti-tumor efficacy of GM-CSF surface-modified whole-tumor-cell vaccine in mouse model of prostate cancer. Cancer Immunol Immunother. 2011;60(5):715–30. https://doi.org/10.1007/s00262-011-0988-4.

    Article  CAS  PubMed  Google Scholar 

  76. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001;61(9):3689–97.

    CAS  PubMed  Google Scholar 

  77. Trinchieri G. Immunobiology of interleukin-12. Immunol Res. 1998;17(1-2):269–78.

    CAS  PubMed  Google Scholar 

  78. Melero I, Mazzolini G, Narvaiza I, Qian C, Chen L, Prieto J. IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends Immunol. 2001;22(3):113–5.

    CAS  PubMed  Google Scholar 

  79. Malvicini M, Alaniz L, Bayo J, García M, Piccioni F, Fiore E, et al. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. OncoImmunology. 2012;1(8):1–10.

    Google Scholar 

  80. Torrero M, Li S. Treatment of SCCVII tumors with systemic chemotherapy and Interleukin-12 gene therapy combination. Methods Mol Biol. 2008;423:339–49. https://doi.org/10.1007/978-1-59745-194-9_26.

    Article  CAS  PubMed  Google Scholar 

  81. Rossowska J, Pajtasz-Piasecka E, Anger N, Wojas-Turek J, Kicielinska J, Piasecki E, et al. Cyclophosphamide and IL-12-transduced DCs enhance the antitumor activity of tumor antigen-stimulated DCs and reduce Tregs and MDSCs number. J Immunother. 2014;37(9):427–39. https://doi.org/10.1097/CJI.0000000000000054.

    Article  CAS  PubMed  Google Scholar 

  82. Suzanne L. Topalian. Targeting Immune Checkpoints in Cancer Therapy. JAMA. 2017;318(17):1647.

    Google Scholar 

  83. Fossa SD, Martinelli G, Otto U, Schneider G, Wander H, Oberling F, et al. Recombinant interferon alfa-2a with or without vinblastine in metastatic renal cell carcinoma: results of a European multi-center phase III study. Ann Oncol. 1992;3(4):301–5.

    CAS  PubMed  Google Scholar 

  84. Motzer RJ, Murphy BA, Bacik J, Schwartz LH, Nanus DM, Mariani T, et al. Phase III trial of interferon alfa-2a with or without 13-cis-retinoic acid for patients with advanced renal cell carcinoma. J Clin Oncol. 2000;18(16):2972–80.

    CAS  PubMed  Google Scholar 

  85. Aass N, De Mulder PH, Mickisch GH, Mulders P, van Oosterom AT, van Poppel H, et al. Randomized phase II/III trial of interferon alfa-2a with and without 13-cis-retinoic acid in patients with progressive metastatic renal cell carcinoma: the European Organisation for Research and Treatment of Cancer Genito-urinary tract Cancer group (EORTC 30951). J Clin Oncol. 2005;23(18):4172–8. https://doi.org/10.1200/JCO.2005.07.114.

    Article  CAS  PubMed  Google Scholar 

  86. Haarstad H, Jacobsen AB, Schjolseth SA, Risberg T, Fossa SD. Interferon-alpha, 5-FU and prednisone in metastatic renal cell carcinoma: a phase II study. Ann Oncol. 1994;5(3):245–8.

    CAS  PubMed  Google Scholar 

  87. Elias L, Blumenstein BA, Kish J, Flanigan RC, Wade JL, Lowe BA, et al. A phase II trial of interferon-alpha and 5-fluorouracil in patients with advanced renal cell carcinoma. A Southwest Oncology Group study. Cancer. 1996;78(5):1085–8. https://doi.org/10.1002/(SICI)1097-0142(19960901)78:5<1085::AID-CNCR19>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  88. Atzpodien J, Kirchner H, Hanninen EL, Deckert M, Fenner M, Poliwoda H. Interleukin-2 in combination with interferon-alpha and 5-fluorouracil for metastatic renal cell cancer. Eur J Cancer. 1993;29A(Suppl 5):S6–8.

    PubMed  Google Scholar 

  89. Sella A, Kilbourn RG, Gray I, Finn L, Zukiwski AA, Ellerhorst J, et al. Phase I study of interleukin-2 combined with interferon-alpha and 5-fluorouracil in patients with metastatic renal cell cancer. Cancer Biother. 1994;9(2):103–11.

    CAS  PubMed  Google Scholar 

  90. Dutcher JP, Logan T, Gordon M, Sosman J, Weiss G, Margolin K, et al. Phase II trial of interleukin 2, interferon alpha, and 5-fluorouracil in metastatic renal cell cancer: a cytokine working group study. Clin Cancer Res. 2000;6(9):3442–50.

    CAS  PubMed  Google Scholar 

  91. Yamashita T, Arai K, Sunagozaka H, Ueda T, Terashima T, Mizukoshi E, et al. Randomized, phase II study comparing interferon combined with hepatic arterial infusion of fluorouracil plus cisplatin and fluorouracil alone in patients with advanced hepatocellular carcinoma. Oncology. 2011;81(5-6):281–90. https://doi.org/10.1159/000334439.

    Article  CAS  PubMed  Google Scholar 

  92. Kasai K, Ushio A, Kasai Y, Sawara K, Miyamoto Y, Oikawa K, et al. Therapeutic efficacy of combination therapy with intra-arterial 5-fluorouracil and systemic pegylated interferon alpha-2b for advanced hepatocellular carcinoma with portal venous invasion. Cancer. 2012;118(13):3302–10. https://doi.org/10.1002/cncr.26648.

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt J, Abel U, Debus J, Harig S, Hoffmann K, Herrmann T, et al. Open-label, multicenter, randomized phase III trial of adjuvant chemoradiation plus interferon alfa-2b versus fluorouracil and folinic acid for patients with resected pancreatic adenocarcinoma. J Clin Oncol. 2012;30(33):4077–83. https://doi.org/10.1200/JCO.2011.38.2960.

    Article  CAS  PubMed  Google Scholar 

  94. Kasai K, Kooka Y, Suzuki Y, Suzuki A, Oikawa T, Ushio A, et al. Efficacy of hepatic arterial infusion chemotherapy using 5-fluorouracil and systemic pegylated interferon alpha-2b for advanced intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2014;21(11):3638–45. https://doi.org/10.1245/s10434-014-3766-7.

    Article  PubMed  Google Scholar 

  95. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Catania C, Maur M, Berardi R, Rocca A, Giacomo AM, Spitaleri G, et al. The tumor-targeting immunocytokine F16-IL2 in combination with doxorubicin: dose escalation in patients with advanced solid tumors and expansion into patients with metastatic breast cancer. Cell Adhes Migr. 2015;9(1-2):14–21. https://doi.org/10.4161/19336918.2014.983785.

    Article  CAS  Google Scholar 

  97. Asakuma M, Yamamoto M, Wada M, Ryuge S, Katono K, Yokoba M, et al. Phase I trial of irinotecan and amrubicin with granulocyte colony-stimulating factor support in extensive-stage small-cell lung cancer. Cancer Chemother Pharmacol. 2012;69(6):1529–36. https://doi.org/10.1007/s00280-012-1858-2.

    Article  CAS  PubMed  Google Scholar 

  98. Pietri E, Andreis D, Fabbri F, Menna C, Schirone A, Kopf B, et al. A phase II study of a dose-density regimen with fluorouracil, epirubicin, and cyclophosphamide on days 1 and 4 every 14 days with filgrastim support followed by weekly paclitaxel in women with primary breast cancer. Oncologist. 2015;20(3):239–40. https://doi.org/10.1634/theoncologist.2014-0326.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo D. Mazzolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malvicini, M., Mazzolini, G.D. (2021). Combination of Chemotherapy and Cytokine Therapy in Treatment of Cancers. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-50287-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50287-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50286-7

  • Online ISBN: 978-3-030-50287-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics